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ABSTRACT

Many signal processing problems—such as analysis, compression, reconstruction, and

denoising—can be facilitated by exploiting the underlying models the signals and data sets

obey. A model often deals with the notion of conciseness and suggests a signal has few

degrees of freedom relative to its ambient dimensionality. For instance, the Shannon-Nyquist

sampling theorem works on bandlimited signals obeying subspace model. As an another

example, the power of sparse signal processing often relies on the assumption that the signals

live in some union of subspaces. In many cases, signals have concise representations which

are often obtained by (i) constructing a dictionary of elements drawn from the signal space,

and then (ii) expressing the signal of interest as a linear combination of a small number of

atoms drawn from the dictionary. Such representations serve as an efficient way to describe

the conciseness of the signals and enable effective signal processing methods. For example,

the sparse representation forms the core of compressive sensing (CS), an emerging research

area that aims to break through the Shannon-Nyquist limit for sampling analog signals.

However, despite its recent success, there are many important applications in signal pro-

cessing that do not naturally fall into the subspace models and sparse recovery framework.

As a classical example, a finite-length vector obtained by sampling a bandlimited signal is not

sparse using the discrete Fourier transform (DFT), the natural tool for frequency analysis

on finite-dimensional space. In other words, the DFT cannot excavate the concise struc-

ture within the sampled bandlimited signals. These signals obey a so-called parameterized

subspace model in which the signals of interest are inherently low-dimensional and live in a

union of subspaces, but the choice of subspace is controlled by a small number of continuous-

valued parameters (the parameter controlling sampled bandlimited signals is the frequency).

This continuous-valued parameterized subspace model appears in many problems including

spectral estimation, mitigation of narrowband interference, feature extraction, and steerable

iii



filters for rotation-invariant image recognition.

The purpose of this thesis is to 1) construct a subspace—whose dimension matches the

effective number of local degrees of freedom—for approximating (almost) all the signals

controlled by a small number of continuous-valued parameters ranging within some certain

intervals; 2) develop rigorous, theoretically-backed techniques for computing projections onto

and orthogonal to these subspaces. By developing an appropriate basis to economically

represent the signals of interest, one can apply effective tools developed for the subspace

model and sparse recovery framework for signal processing. In the process of building local

subspace fits, we will also obtain the effective dimensionality of such signals.

Our key contributions include (i) new non-asymptotic results on the eigenvalue distribu-

tion of (periodic) discrete time-frequency localization operators and fast constructions for

computing approximate projections onto the discrete prolate spheroidal sequences (DPSS’s)

subspace; (ii) an orthogonal approximate Slepian transform that has computational com-

plexity comparable to the fast Fourier transform (FFT); (iii) results on the spectrum of

combined time- and multiband-limiting operations in the discrete-time domain and analysis

for a dictionary formed by concatenating a collection of modulated DPSS’s; (iv) analysis for

the dimensionality of wall and target return subspaces in through-the-wall radar imaging

and algorithms for mitigating wall clutter and identifying non-point targets; (v) asymptotic

performance guarantee of the individual eigenvalue estimates for Toeplitz matrices by cir-

culant matrices; and (vi) analysis of the eigenvalue distribution of time-frequency limiting

operators on locally compact abelian groups.
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CHAPTER 1

INTRODUCTION

In this chapter, we present the central theme of this dissertation and outline our specific

contributions.

1.1 Concise Signal Models

A fundamental challenge in signal processing is to efficiently acquire and extract infor-

mation for (potentially high-dimensional) signals and data sets. Effective techniques for

overcoming this challenge often rely on accurate models for signals or data sets of interest.

In general, models are useful as a priori knowledge for analysis, capture, compression and

storage, communication, denoising and processing of signals.

For a given problem, a model can always be specified for the signals to be processed. A

model can take the form of deterministic class (like a bandlimited signal), or probabilistic

model (like a stochastic process). We can utilize this model to distinguish classes of inter-

esting signals from uninteresting ones, or information from noise. For example, based on

the assumption that a continuous-time signal is bandlimited (i.e., it can be written as a lin-

ear combination of low-frequency sinusoids), the Shannon-Nyquist sampling theorem [114]

specifies a minimal sampling rate that permits a discrete sequence of its samples to preserve

all the information. At its core, the Shannon-Nyquist sampling theorem states that we can

utilize the bandlimitedness of the given signal to distinguish it from other signals only from

its samples.

Modelling most physical signals as bandlimited is a stylized example of subspace model in

signal processing. Subspace models have been incorporated into modern signal processing by

modeling signals as vectors living in an appropriate vector space (also called linear space). A

vector space is a collection of vectors, which may be added together or multiplied by scalars

resulting in new vectors that still live in this vector space. Simple but widely encountered
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vector spaces include RN , a coordinate space with N real variables, and L2, the set of all

square-integrable functions. A linear subspace S of a vector space V is a nonempty subset of

V that is closed under addition and scalar multiplication. A subspace is well characterized

by its dimension and basis, which is a set of vectors that are linear independent and span

the whole subspace. The dimensionality serves as a way to describe the conciseness of

signals living in this subspace. Based on the fact that any signal in the subspace S can

be represented as a linear combination of the basis elements (which are also called atoms),

subspace modeling provides a powerful tool for signal processing. For example, one can

compress the signals by using the representation coefficients. As an another example, we can

denoise the signals (if they are corrupted by noise) by projecting them onto the subspace.

Like the assumption of bandlimitedness, models in signal processing often rely on the

assumption that the signals have few degrees of freedom relative to their ambient dimension-

ality. For example, we say that a signal is sparse if it can be well-approximated as a linear

combination of a small number of atoms or elements from some basis or dictionary. Sparsity

captures the concise structure existing in most natural signals. As an example, many natural

images have a sparse representation in a wavelet dictionary because very few wavelets can

describe large smooth image regions.

Sparse representation has been widely used for signal denoising [39], signal recovery [13]

and compressive sensing (CS) [15, 16, 18, 26, 40], an emerging research area that aims to

break through the Shannon-Nyquist limit for sampling analog signals. One challenge in

sparse modeling—due to its high nonlinearity since the choice of which dictionary elements

are used can change from signal to signal—is to identify which of the dictionary elements

best representing a given signal. This problem has garnered much attention in the applied

mathematics and signal processing communities, and conditions can be established under

which methods based on convex optimization [15, 24, 41] and greedy algorithms [11, 93, 99,

127] provide suitable approximations.
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For a given class of signals or data sets, another challenge in sparse modeling is to con-

struct a dictionary in which the set of signals have a sparse representation. This challenge

is usually referred to as dictionary learning. Typical algorithms for dictionary learning with

alternating minimization scheme include the method of optimal directions (MOD) [48], the

K-singular value decompostion (K-SVD) [1] and a method for designing an incoherent spar-

sifying dictionary [87]. Though these algorithms have been known to work pretty well in

practice, it remains an active research area to fully understand the underpinning of this

phenomenon, especially for the conditions under which the dictionary can be exactly recov-

ered. Recently, Sun et al. [123] provided a theoretical understanding of as well as a provable

efficient algorithm for dictionary learning with a complete dictionary, i.e., the dictionary is

square and is also full rank.

1.2 Parameterized Subspace Models

As we discussed above, models play a central role in signal processing. Moving to the

richer subspace model has led to powerful new techniques for dimensionality reduction, noise

removal, and recovering high-dimensional signals from indirect observations. However, de-

spite its recent success, there are many important applications in signal processing that do

not naturally fall into the subspace models and sparse recovery framework. We describe

several representative examples below.

Scenario #1. Consider an analog signal x(t) that can be expressed as a sum of just K

sinusoids of various frequencies, amplitudes, and phases. Suppose we collect N Nyquist-rate

samples of x(t) and stack these into a sample vector x ∈ CN . If we analyze x using the

natural tool for frequency analysis on CN—the DFT—then in general all N DFT coefficients

will be nonzero, unless the analog frequencies contributing to x(t) happen to live on a certain

harmonic grid. This is even though the actual number of degrees of freedom in x(t) (and

thus in x) is just K. In other words, the DFT cannot reveal the concise structure within x.

Figure 1.1 severs as an example showing the DFT of a sampled pure sinusoid with frequency

off the “DFT-grid”. In a more practical scenario, suppose the original analog signal x(t) has
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Figure 1.1: A plot of the DFT of a length-N (with N = 64) pure sinusoid with frequency
0.1 which is off the “DFT-grid”.

a Fourier transform with support limited to a small number of narrow bands (rather than

consisting of pure tones). Again, in general, all N DFT coefficients of x will be nonzero

since the time-limiting operation will cause the spectral bands to smear out. We describe

this scenario in Section 2.4 with more detail. This complication arises in problems such as

spectral estimation and mitigation of narrowband interference.

Scenario #2. Another example arises in problems such as time of arrival estimation in

matched filtering, radar signal processing with point targets, and super-resolution. Consider

an analog signal x(t) that can be expressed as a sum of K pulses p(t) of a known shape

but with differing amplitudes and times of arrival. Suppose we collect N observations of

x(t) and stack these into a sample vector x ∈ CN . The observations could consist of N

Nyquist-rate samples of x(t), the N lowest frequency Fourier series coefficients of x(t), or

the inner products between x(t) and N preselected linear functionals. In general there is no

orthonormal basis for CN in which x will be K-sparse, even though the actual number of

degrees of freedom in x(t) (and thus in x) is just K. In the case of non-point targets, then

each of the K pulses in the original analog signal x(t) is convolved with a different unknown
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kernel of narrow—but nonzero—width. Again there is no basis in which the vector x can be

economically represented and processed.

In the representative problems we list above, the signals obey a so-called parameterized

subspace model in which the signals of interest are inherently low-dimensional and live in a

union of subspaces, but the choice of subspace is controlled by a small number of continuous-

valued parameters. This continuous-valued parameterized subspace model also appears in

many other problems, such as feature extraction aiming to detect a pattern independent of

its orientation in an image [86], steerable filters for rotation-invariant image recognition [133],

and so on.

1.3 Overview and Contributions

This dissertation mainly focuses on parameterized subspace models. Rather than at-

tempt to discretize these problems and use existing sparse processing techniques (a program

potentially fraught with difficulty, as the sparsity generally does not translate directly into

the discrete domain), our essential research goal is to develop general techniques for sparse

processing using a more natural parameterized subspaces model. In particular, we aim to 1)

construct a subspace for approximating (almost) all the signals controlled by a small number

of continuous-valued parameters ranging within some certain intervals; 2) develop rigorous,

theoretically-backed techniques for computing projections onto and orthogonal to these sub-

spaces. By developing an appropriate basis to economically represent the signals of interest,

one can apply effective tools developed for subspace modeling and sparse modeling for signal

processing. In the processing of building local subspace fits, we will also provide an answer

to the effective dimensionality of such signals.

Our key contributions include new:

• non-asymptotic results on the eigenvalue distribution of (periodic) discrete time-frequency

localization operators and fast constructions for computing approximate projections

onto the leading Slepian basis elements;
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• a rapid orthogonal approximate Slepian transform (ROAST) for the discrete vector one

obtains when collecting a finite set of uniform samples from a baseband analog signal;

• results on the spectrum of combined time- and multiband-limiting operations in the

discrete-time domain and analysis for a dictionary formed by concatenating a collection

of modulated DPSS’s;

• analysis for the dimensionality of wall and target return subspaces in through-the-wall

radar imaging and algorithms for mitigating wall clutter and identifying non-point

targets;

• asymptotic performance guarantees of the individual eigenvalue estimates for Toeplitz

matrices by circulant matrices;

• generalization of the existing results on the eigenvalues of composite time- and band-

limiting operators to locally compact abelian groups.

We outline these contributions chapter-by-chapter.

We begin in Chapter 2 with a review of basic topics in signal processing and mathematics

that form the foundation of this dissertation.

In Chapter 3, we consider the task of concisely representing a discrete vector one obtains

when collecting a finite set of uniform samples from a baseband analog signal (which is a

special case of Scenario #1). The optimal basis (i.e., solution) to this problem in the

least-squares sense forms the foundation for the analysis of the problems listed in Scenario

#1 and is given by the DPSS basis (a.k.a the Slepian basis) [118]. However, due to the high

computational complexity of projecting onto the DPSS basis, this representation is often

overlooked in favor of the FFT. We show that there exist fast constructions for computing

approximate projections onto the leading Slepian basis elements. The complexity of the

resulting algorithms is comparable to the FFT, and scales favorably as the quality of the

desired approximation is increased. In the process of bounding the complexity of these
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algorithms, we also establish a new nonasymptotic result on the eigenvalue distribution of

discrete time-frequency localization operators. This nonasymptotic result is also extended for

the eigenvalue distribution of periodic discrete time-frequency localization operators [57, 71].

We then demonstrate how these algorithms allow us to efficiently compute the solution to

certain least-squares problems that arise in signal processing. We also provide simulations

comparing these fast, approximate Slepian methods to exact Slepian methods as well as

traditional FFT based methods.

In Chapter 4, we provide a Rapid Orthogonal Approximate Slepian Transform (ROAST)

for the discrete vector one obtains when collecting a finite set of uniform samples from a

baseband analog signal. Unlike the fast construction of projections onto the leading DPSS

vectors that is not an orthogonal projection, the ROAST offers an orthogonal projection

which is an approximation to the orthogonal projection onto the leading DPSS vectors. As

such, the ROAST is guaranteed to accurately and compactly represent not only oversampled

bandlimited signals but also the leading DPSS vectors themselves. Moreover, the subspace

angle between the ROAST subspace and the corresponding DPSS subspace can be made

arbitrarily small. The complexity of computing the representation of a signal using the

ROAST is comparable to the FFT, which is much less than the complexity of using the DPSS

basis vectors. We also give non-asymptotic results to guarantee that the proposed basis not

only provides a very high degree of approximation accuracy in a mean-square error sense for

bandlimited sample vectors, but also that it can provide high-quality approximations of all

sampled sinusoids within the band of interest.

In Chapter 5, we study possible dictionaries for representing the discrete vector one ob-

tains when collecting a finite set of uniform samples from a multiband analog signal (the

problems presented in Scenario #1). By analyzing the spectrum of combined discrete time-

and multiband-limiting operations (which are equivalent to some corresponding Toeplitz ma-

trices), we conclude that the information level of the sampled multiband vectors is essentially

equal to the time-frequency area. For representing these vectors, we consider a dictionary
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formed by concatenating a collection of modulated Discrete Prolate Spheroidal Sequences

(DPSS’s). We study the angle between the subspaces spanned by this dictionary and an op-

timal dictionary, and we conclude that the multiband modulated DPSS dictionary—which is

simple to construct and more flexible than the optimal dictionary in practical applications—is

nearly optimal for representing multiband sample vectors. We also show that the multiband

modulated DPSS dictionary not only provides a very high degree of approximation accu-

racy in a mean squared error (MSE) sense for multiband sample vectors (using a number

of atoms comparable to the information level), but also that it can provide high-quality

approximations of all sampled sinusoids within the bands of interest.

In Chapter 6, motivated by the fact that Toeplitz matrices appear naturally for param-

eterized subspace models, we study a fast way to approximately compute the spectrum of

Toeplitz matrices. It is known that any sequence of uniformly bounded N × N Hermitian

Toeplitz matrices {HN} is asymptotically equivalent to a certain sequence of N×N circulant

matrices {CN} derived from the Toeplitz matrices in the sense that ‖HN −CN‖F = o(
√
N)

as N →∞. This implies that certain collective behaviors of the eigenvalues of each Toeplitz

matrix are reflected in those of the corresponding circulant matrix and supports the utiliza-

tion of the computationally efficient fast Fourier transform (instead of the Karhunen-Loève

transform) in applications like coding and filtering. We study the asymptotic performance

of the individual eigenvalue estimates. We show that the asymptotic equivalence of the circu-

lant and Toeplitz matrices implies the individual asymptotic convergence of the eigenvalues

for certain types of Toeplitz matrices. We also show that these estimates asymptotically ap-

proximate the largest and smallest eigenvalues for more general classes of Toeplitz matrices.

In Chapter 7, we consider the eigenvalues of composite time- and band-limiting operators

on locally compact abelian groups. By invoking Fourier transforms for functions defined on

locally compact abelina groups, the time-frequency limiting operators generalize the con-

ventional limiting operators which result in DPSS’s and prolate spheroidal wave functions

(PSWF’s) [120]. Applications of this unifying treatment are discussed in relation to channel
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capacity and to representation and approximation of signals.

We conclude with a final discussion and directions for future research in Chapter 8.

This thesis is a reflection of a series of intensive collaborations. Where appropriate, the

first page of each chapter lists primary collaborators, who share credit for this work.
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CHAPTER 2

BACKGROUND MATERIAL

In this chapter, we briefly review basic topics in signal processing and linear algebra.

2.1 General Mathematical Preliminaries

To begin, we provide a brief discussion of mathematical preliminaries and notation. We

indicate finite-dimensional vectors and matrices by bold characters to distinguish them from

infinite-length sequences and signals (or functions) with continuous variables. We index all

such vectors and matrices beginning at 0. The n-th element of a vector x is denoted by x[n],

while the (m,n)-th element of a matrix A is denoted by A[m,n]. The Hermitian transpose

of a matrix A is denoted by A∗ or AH. For any natural number N , we let [N ] denote the

set {0, 1, . . . , N − 1}. For any k ∈ {1, 2, . . . , N}, let [A]k denote the N × k matrix formed

by taking the first k columns of A ∈ CN×N . We use o(·) and O(·) as the conventional

“little-o” and “big-O” notations, respectively. In addition, x(N) ∼ y(N) means x and y are

asymptotically equal, that is x(N) = y(N) + o(y(N)) = (1 + o(1))y(N) as N →∞. For any

f ∈ [−1
2
, 1

2
] we will let

ef :=


ej2πf0

ej2πf1

...
ej2πf(N−1)

 ∈ CN (2.1)

denote a length-N vector of samples from a discrete-time complex exponential signal with

digital frequency f . This sampled exponential ef along with its corresponding N×N matrix

Ef := diag(ef ) will appear very often through this dissertation. Here, diag : CN → CN×N

returns a square diagonal matrix with the elements of the input vector on the main diagonal.

For a given continuous-time function x(t), t ∈ D, the conventional Lp norm with p ≥ 1 is

defined as
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‖x‖Lp(D) =

(∫
t∈D
|x(t)|p d t

)1/p

.

An Lp(D) space consists of all functions for which the Lp norm is finite (i.e., the p-th power

of the absolute value is integrable). When D = R, we usually drop it and just write Lp space

and ‖x‖Lp . In RN or CN , the p-norm of x ∈ CN is defined by

‖x‖p =

(
N−1∑
n=0

|x[n]|p
)1/p

.

For any infinite-length sequence x, its p-norm is also defined as

‖x‖p =

(
∞∑

n=−∞

|x[n]|p
)1/p

.

An `p(Z) space consists of all sequences for which the `p norm is finite.

2.2 Conventional Fourier Transforms

For a given continuous-time function x(t) ∈ L1, its continuous-time Fourier transform

(CTFT) is defined by

X(F ) =

∫ ∞
−∞

x(t)e−j2πFt d t,

where the transform variable F (usually) represents frequency when the independent variable

t represents time. The corresponding inverse CTFT (ICTFT) is defined as

x(t) =

∫ ∞
−∞

X(F )ej2πFt dF.

For any x ∈ CN , the discrete Fourier transform (DFT) of x, denoted by x̂, is defined as

x̂[n] :=
1√
N

N−1∑
m=0

x[n]e−j
2πnm
N

for all n ∈ [N ]. Given x̂, x can be recovered by taking the inverse DFT (IDFT), i.e.,

x[m] =
1√
N

N−1∑
n=0

x̂[n]ej
2πnm
N .

For a given discrete-time signal x[n], we let
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x̃(f) =
∞∑

n=−∞

x[n]e−j2πfn

denote the discrete-time Fourier transform (DTFT) of x[n]. The corresponding inverse

DFTF (IDTFT) is defined as

x[n] =

∫ 1

0

x̃(f)ej2πfn

for all n ∈ Z. For any x ∈ CN , we use x̂ to denote the DTFT of the sequence obtained by

zero-padding x̂, i.e.

x̃(f) =
N∑
n=0

x[n]e−j2πfn.

2.3 Signal Dictionaries and Representations

Effective techniques for signal processing often rely on meaningful representations that

capture the structure inherent in the signals of interest. Many signal processing tasks—such

as signal denoising, recognition, and compression—benefit from having a concise signal repre-

sentation. Concise signal representations are often obtained by (i) constructing a dictionary

of elements drawn from the signal space, and then (ii) expressing the signal of interest as a

linear combination of a small number of atoms drawn from the dictionary.

For the signal space CN , we represent a dictionary as an N × L matrix Ψ, which has

columns (or atoms) ψ0,ψ1, . . . ,ψL−1. Using this dictionary, a signal x ∈ CN can be repre-

sented exactly or approximately as a linear combination of the ψi:

x ≈ Ψα =
L−1∑
i=0

α[i]ψi

for some α ∈ CL, whose entries are referred to as coefficients.

When the coefficients have a small fraction of nonzero values or decay quickly, one can

form highly accurate and concise approximations of the original signal using just a small

number of atoms. In some cases, one can achieve this using a linear approximation that is
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formed with a prescribed subset of J < L atoms:

x ≈
∑
i∈Ω

α[i]ψi, (2.2)

where Ω ⊂ {0, 1, . . . , L − 1} is a fixed subset of cardinality J . For example, one might use

the lowest J frequencies to approximate bandlimited signals in a Fourier basis.

In other cases, it may be beneficial to adaptively choose a set of atoms in order to

optimally represent each signal. Such a nonlinear approximation can be expressed as

x ≈
∑
i∈Ω(x)

α[i]ψi,

where Ω(x) ⊂ {0, 1, . . . , L − 1} is a particular subset of cardinality J and can change from

signal to signal. A more thorough discussion of this topic, which is also known as sparse

approximation, can be found in [34, 37, 92]. Sparse approximations have been widely used for

signal denoising [39], signal recovery [13] and compressive sensing (CS) [15, 16, 18, 26, 40], an

emerging research area that aims to break through the Shannon-Nyquist limit for sampling

analog signals. A challenge in finding the best J-term approximation for a given signal x

is to identify which of the
(
L
J

)
subspaces (or, equivalently, index sets Ω(x)) to use. Many

methods based on convex optimization [15, 24, 41] and greedy algorithms [11, 93, 99, 127]

provide suitable approximations under certain conditions.

2.4 Finite-length Vectors of Sampled Analog Signals

As a motivating example listed in Section 1.2, we will study dictionaries for representing

the discrete vector one obtains when collecting a finite set of uniform samples from a certain

type of analog signal. We let x(t) denote a complex-valued analog (continuous-time) signal,

and for some finite number of samples N and some sampling period Ts > 0, we let

x = [x(0) x(Ts) · · · x((N − 1)Ts)]
T (2.3)
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denote the length-N vector obtained by uniformly sampling x(t) over the time interval

[0, NTs) with sampling period Ts. Here T stands for the transpose operator. Our focus

is on obtaining a dictionary Ψ that provides highly accurate approximations of x using as

few atoms as possible.

It is the structure we assume in the analog signal x(t) that motivates the search for

a concise representation of x. Specifically, we assume that x(t) obeys a multiband signal

model, in which the signal’s continuous-time Fourier transform (CTFT) is supported on a

small number of narrow bands (we assume the bands are known). We describe this model

more fully in Section 2.4.2. Before doing so, we begin in Section 2.4.1 with a simpler analog

signal model for which an efficient dictionary Ψ is easier to describe.

2.4.1 Multitone Signals

A multitone analog signal is one that can be expressed as a sum of J complex exponentials

of various frequencies:

x(t) =
J−1∑
i=0

βie
j2πFit.

Suppose such a multitone signal x(t) is bandlimited with bandlimit Bnyq
2

Hz, i.e., that

maxi |Fi| ≤ Bnyq
2

. Let x, as defined in (2.3), denote the length-N vector obtained by uni-

formly sampling x(t) over the time interval [0, NTs) with sampling period Ts ≤ 1
Bnyq

which

meets the Nyquist sampling rate. We can express these samples as

x[n] =
J−1∑
i=0

βie
j2πfin, n = 0, 1, . . . , N − 1, (2.4)

where fi = FiTs. This model arises in problems such as radar signal processing with point

targets [78] and super-resolution [17].

In certain cases, an effective dictionary for representing x is the N ×N DFT matrix [7,

128, 78], where ψi[n] = ej2πin/N for i = 0, 1, . . . , N − 1 and n = 0, 1, . . . , N − 1. Using

this dictionary, we can write x = Ψα, where α ∈ CN contains the DFT coefficients of x.

When the frequencies fi appearing in (2.4) are all integer multiples of 1/N , then α will be
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J-sparse (meaning that it has at most J nonzero entries), and the sparse structure of x(t)

in the analog domain will directly translate into a concise representation for x in CN . This

“on grid” multitone signal is sometimes assumed for simplicity in the CS literature [128].

However, when the frequencies comprising x(t) are arbitrary, the sparse structure in α will

be destroyed due to the “DFT leakage” phenomenon. Such a problem can be mitigated by

applying a windowing function in the sampling system, as in [128], or iteratively using a

refined dictionary [49]. An alternative is to consider the model (2.4) directly as in [46, 124].

However, such approaches cannot be generalized to scenarios in which the analog signals

contain several bands, each with non-negligible bandwidth.

2.4.2 Multiband Signals

A more realistic model for a structured analog signal is a multiband model, in which x(t)

has a CTFT supported on a union of several narrow bands

F =
J−1⋃
i=0

[Fi −Bbandi/2, Fi +Bbandi/2],

i.e.,

x(t) =

∫
F
X(F )ej2πFtdF.

Here X(F ) denotes CTFT of x(t). The band centers are given by the frequencies {Fi}i∈[J ]

and the band widths are denoted by {Bbandi}i∈[J ], where [J ] denotes the set {0, 1, . . . , J −1}.

Again we let x, as defined in (2.3), denote the length-N vector obtained by uniformly

sampling x(t) over the time interval [0, NTs) with sampling period Ts. We assume Ts is

chosen to satisfy the minimum Nyquist sampling rate, which means

Ts ≤
1

Bnyq
:=

1

2 maxi∈[J ] {|Fi ±Bbandi/2|}
.

Under these assumptions, the sampled multiband signal x can be expressed as an integral

of sampled pure tones (i.e., discrete-time sinusoids)

x[n] =

∫
W
x̃(f)ej2πfn df, n = 0, 1, . . . , N − 1, (2.5)
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where the digital frequency f is integrated over the union of intervals

W := [f0−W0, f0+W0]∪[f1−W1, f1+W1]∪· · ·∪[fJ−1−WJ−1, fJ−1+WJ−1] ⊆
[
−1

2
,
1

2

]
(2.6)

with fi = TsFi and Wi = TsBbandi/2 for all i ∈ [J ]. The weighting function x̃(f) appearing

in (2.5) equals the scaled CTFT of x(t),

x̃(f) =
1

Ts
X(F )|F= f

Ts

, |f | ≤ 1

2
,

and corresponds to the DTFT of the infinite sample sequence {. . . , x(−Ts), x(0), x(Ts), . . . }.

(However, we stress that our interest is on the finite-length sample vector x and not on this

infinite sample sequence.) Such multiband signal models arise in problems such as radar

signal processing with non-point targets [2] and mitigation of narrowband interference [30,

33].

2.5 Time, Index, and Multiband-Limiting Operators and the Prolate Matrix

Let BW : `2(Z) → `2(Z) denote the multiband-limiting operator that bandlimits the

DTFT of a discrete-time signal to the frequency range W ⊂ [−1
2
, 1

2
], i.e., for y ∈ `2(Z), we

have that1

BW(y)[m] :=

∫
W
ej2πfmdf ? y[m] =

∞∑
n=−∞

(
y[n]

∫
W
ej2πf(m−n)df

)
, (2.7)

where ? stands for convolution. In addition, let TN : `2(Z)→ `2(Z) denote the operator that

zeros out all entries outside the index range {0, 1, . . . , N − 1}. That is

TN(y)[m] :=

{
y[m], m ∈ [N ],
0, otherwise.

Next, define the index-limiting operator IN : `2(Z)→ CN as

IN(y)[m] := y[m], m ∈ [N ].

The adjoint operator I∗N : CN → `2(Z) (anti-index-limiting operator) is given by

1For convenience, we use BW instead of B[−W,W ] when W reduces to [−W,W ]. This is also the reason for
many other notations involving subscript W .
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I∗N(y)[m] :=

{
y[m], m ∈ [N ],
0, otherwise.

We can observe that TN = I∗NIN . By an abuse of notation, we assume that IN also works

on finite-dimensional vectors, i.e., for any y ∈ CM with M ≥ N , IN(y) ∈ CN with elements

given by

IN(y)[m] := y[m], m ∈ [N ].

The input of IN should be clear from the context.

Now the time- and multiband-limiting operator BWTN : `2(Z)→ `2(Z) is defined by

BW(TN(y))[m] :=
N−1∑
n=0

(
y[n]

∫
W
ej2πf(m−n)df

)
, m ∈ Z. (2.8)

Further composing the time- and multiband-limiting operators, we obtain the linear operator

TNBWTN : `2(Z)→ `2(Z) as

TN(BW(TN(y)))[m] =

{ ∑N−1
n=0

(
y[n]

∫
W e

j2πf(m−n)df
)
, m ∈ [N ],

0, otherwise.
(2.9)

Similarly, combining the index- and multiband-limiting operators, we obtain the linear op-

erator INBWI∗N : CN → CN as

IN(BW(I∗N(y)))[m] =
N−1∑
n=0

(
y[n]

∫
W
ej2πf(m−n)df

)
, m ∈ [N ]. (2.10)

Suppose y′ ∈ `2(Z) is an eigenfunction of TNBWTN with corresponding eigenvalue λ′:

TN(BW(TN(y′))) = λ′y′. We can verify that IN(BW(I∗N(IN(y′)))) = λ′IN(y′). On the

other hand, if y′′ and λ′′ satisfy IN(BW(I∗N(y′′))) = λ′′y′′, then we can conclude that

TN(BW(TN(I∗N(y′′)))) = λ′′I∗N(y′′). Therefore TNBWTN and INBWI∗N have the same eigen-

values, and the eigenvectors of INBWI∗N can be obtained by index-limiting the eigenvectors

of TNBWTN .

It is easy to show that INBWI∗N is equivalent to the prolate matrix BN,W, which has

entries
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BN,W[m,n] :=

∫
W
ej2πf(m−n)df =

J−1∑
i=0

ej2πfi(m−n) sin (2πWi(m− n))

π(m− n)
(2.11)

for all m,n ∈ [N ].

2.6 The Slepian Basis and the Fourier Basis

In this section, we provide a formal definition of the Slepian basis and briefly describe

some of the key results from Slepian’s 1978 paper on DPSS’s [118]. Given any N ∈ N

and W ∈ (0, 1
2
), the DPSS’s are a collection of N discrete-time sequences that are strictly

bandlimited to the digital frequency range |f | ≤ W yet highly concentrated in time to the

index range n = 0, 1, . . . , N − 1. The DPSS’s are defined to be the eigenvectors of a two-

step procedure in which one first time-limits the sequence and then bandlimits the sequence.

Recall that BW denotes an operator that takes a discrete-time signal, bandlimits its DTFT

to the frequency range |f | ≤ W , and returns the corresponding signal in the time domain.

Additionally, TN is an operator that takes an infinite-length discrete-time signal and zeros

out all entries outside the index range {0, 1, . . . , N − 1} (but still returns an infinite-length

signal). With these definitions, the DPSS’s are defined in [118] as follows.

Definition 2.1. Given any N ∈ N and W ∈ (0, 1
2
), the DPSS’s are a collection of N

real-valued discrete-time sequences s(0)
N,W , s

(1)
N,W , . . . , s

(N−1)
N,W that, along with the corresponding

scalar eigenvalues 1 > λ
(0)
N,W > λ

(1)
N,W > · · · > λ

(N−1)
N,W > 0, satisfy

BW (TN(s
(`)
N,W )) = λ

(`)
N,W s

(`)
N,W (2.12)

for all ` ∈ {0, 1, . . . , N − 1}. The DPSS’s are normalized so that

‖TN(s
(`)
N,W )‖2 = 1 (2.13)

for all ` ∈ {0, 1, . . . , N − 1}.

One of the central contributions of [118] was to examine the behavior of the eigenvalues

λ
(0)
N,W , . . . , λ

(N−1)
N,W . In particular, [118] shows that the first 2NW eigenvalues tend to cluster
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extremely close to 1, while the remaining eigenvalues tend to cluster similarly close to 0.

This is made more precise in the following lemma from [118].

Lemma 2.1. (Clustering of eigenvalues [118, 32]) Suppose that W ∈ (0, 1
2
) is fixed.

1. Fix ε ∈ (0, 1). Then there exist constants C1(W, ε), C2(W, ε) (which may depend on

W, ε) and an integer N0(W, ε) (which may also depend on W, ε) such that

1− λ(`)
N,W ≤ C1(W, ε)e−C2(W,ε)N , ∀ ` ≤ b2NW (1− ε)c

for all N ≥ N0(W, ε).

2. Fix ε ∈ (0, 1
2W
− 1). Then there exist constants C3(W, ε), C4(W, ε) (which may depend

on W, ε) and an integer N1(W, ε) (which may also depend on W, ε) such that

λ
(`)
N,W ≤ C3(W, ε)e−C4(W,ε)N , ∀ ` ≥ d2NW (1 + ε)e

for all N ≥ N1(W, ε).

This tells us that the range of the operator BWTN has an effective dimension of ≈ 2NW .

Moreover, with only a few exceptions near the “transition region” at ` ≈ 2NW , we can

reasonably approximate the eigenvalues λ(`)
N,W to be either 1 or 0. This will play a central

role throughout our analysis.

Finally, we also note that while each DPSS actually has infinite support in time, several

very useful properties hold for the collection of signals one obtains by time-limiting the

DPSS’s to the index range n = 0, 1, . . . , N − 1. First, it can be shown that [118]

‖BW (TN(s
(`)
N,W ))‖2 =

√
λ

(`)
N,W . (2.14)

Comparing (2.13) with (2.14), we see that for values of ` where λ(`)
N,W ≈ 1, nearly all of

the energy in TN(s
(`)
N,W ) is contained in the frequencies |f | ≤ W . While by construction the

DTFT of any DPSS is perfectly bandlimited, the DTFT of the corresponding time-limited

DPSS will only be concentrated in the bandwidth of interest for the first ≈ 2NW DPSS’s.

As a result, we will frequently be primarily interested in roughly the first 2NW DPSS’s.
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Second, the time-limited DPSS’s are orthogonal [118] so that for any `, `′ ∈ {0, 1, . . . , N−

1} with ` 6= `′,

〈TN(s
(`)
N,W ), TN(s

(`′)
N,W )〉 = 0. (2.15)

Finally, like the DPSS’s, the time-limited DPSS’s have a special eigenvalue relationship with

the time-limiting and bandlimiting operators. In particular, if we apply the operator TN

to both sides of (2.12), we see that the sequences TN(s
(`)
N,W ) are actually eigenfunctions of

the two-step procedure in which one first bandlimits a sequence and then time-limits the

sequence.

These properties, together with the fact that our focus is primarily on providing compu-

tational tools for finite-length vectors, motivate our definition of the Slepian basis to be the

restriction of the (time-limited) DPSS’s to the index range n = 0, 1, . . . , N − 1 (discarding

the zeros outside this range).

Definition 2.2. Given any N ∈ N and W ∈ (0, 1
2
), the Slepian basis is given by the vectors

s
(0)
N,W , s

(1)
N,W , . . . , s

(N−1)
N,W ∈ RN which are defined by restricting the time-limited DPSS’s to the

index range n = 0, 1, . . . , N − 1:

s
(`)
N,W [n] := TN(s

(`)
N,W )[n] = s

(`)
N,W [n]

for all `, n ∈ {0, 1, . . . , N −1}. For simplicity, we will often use the notation SN,W to denote

the N ×N matrix given by

SN,W =
[
s

(0)
N,W · · · s(N−1)

N,W

]
.

Observe that combining (2.13) and (2.15), it follows that SN,W does indeed form an

orthonormal basis for CN (or for RN). However, following from our discussion above, the

partial Slepian basis constructed using just the first ≈ 2NW basis elements will play a

special role and can be shown to be remarkably effective for capturing the energy in a

length-N window of samples of a bandlimited signal (see [32] for further discussion.) In such
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situations, we will also use the notation SK to denote the first K columns of SN,W (where

N and W are clear from the context and typically K ≈ 2NW ).

In our discussion above we derived the Slepian basis by following the same approach

as in [118] and considering the time-limitations of the eigenfunctions of the operator given

by BWTN . As illustrated in (2.11), an alternative way to derive SN,W is to consider the

eigenvectors of the N ×N prolate matrix BN,W [132], which is the matrix with entries given

by

BN,W [m,n] :=
sin 2πW (m− n)

π(m− n)
(2.16)

for all m,n ∈ {0, 1, . . . , N − 1}. Indeed, BN,W can be understood as the finite truncation of

the infinite matrix representation of BWTN . Thus, SN,W contains the eigenvectors of BN,W

and we can write BN,W as

BN,W = SN,WΛN,WS
∗
N,W

where ΛN,W is an N × N diagonal matrix with the eigenvalues λ(0)
N,W , . . . , λ

(N−1)
N,W , along the

main diagonal (sorted in descending order).

The primary goal of Chapter 3 is to develop fast algorithms for working with SN,W (or

BN,W , which also arises in many practical applications, as detailed in Section 3.3 below).

Towards this end, we will begin by examining the relationship between BN,W and the matrix

obtained by projecting onto the lowest 2NW Fourier coefficients. To be more precise, we

define W ′ such that 2NW ′ is the nearest odd integer to 2NW , and we let FN,W denote the

partial Fourier matrix with the lowest 2NW ′ frequency DFT vectors of length N , i.e.,

FN,W =
1√
N

[
e−(2NW ′−1)/2N · · · e(2NW ′−1)/2N

]
. (2.17)

Note that the projection onto the span of FN,W is given by the matrix FN,WF ∗N,W , which

has entries given by

[FN,WF
∗
N,W ][m,n] =

1

N

NW ′− 1
2∑

k=−NW ′+ 1
2

ej2π(m−n)k/N =
sin(2πW ′(m− n))

N sin(πm−n
N

)
(2.18)
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for m,n = 0, . . . , N − 1.

2.7 Representations of Sampled Sinusoids and Oversampled Bandlimited Sig-
nals

Note that for any orthonormal matrix Q ∈ CN×K ,

∫ W

−W
‖ef −QQ∗ef‖2

2 df =

∫ W

−W
trace

(
efe

∗
f −QQ∗efe∗f

)
df

= trace (BN,W −QQ∗BN,W ) ,

(2.19)

where ef is a length-N sinusoid defined in (2.1). For any value of K, the quantity in (2.19)

is minimized by the choice of Q = SK . This implies that SK is the best basis of K columns

to represent (in a MSE sense) the collection of sampled sinusoids {ef}f∈[−W,W ]. Formally,

∫ W

−W
‖ef − SKS∗Kef‖

2
2 df =

N−1∑
`=K

λ
(`)
N,W , (2.20)

whereas for each f ∈ [−W,W ], ‖ef‖2
2 = N . It follows from Lemma 2.1 that SK provides

very accurate approximations (in a MSE sense) for all sampled sinusoids {ef}f∈[−W,W ] if one

chooses K slightly larger than 2NW .

We note that any representation guarantee for sampled sinusoids {ef}f∈[−W,W ] can also

be used for finite-length sample vectors arising from sampling random bandlimited baseband

signals. Suppose x is a continuous-time, zero-mean, wide sense stationary random process

with power spectrum

Px(F ) =


1

Bband
, F ∈ [−Bband

2
, Bband

2
],

0, otherwise.

Let x = [x(0) x(Ts) · · · x((N − 1)Ts)]
T ∈ CN denote a finite vector of samples acquired

from x(t) with a sampling interval of Ts ≤ 1/Bband. Let fc = FcTs and W = BbandTs
2

. We

have [32]

E
[
‖x−QQ∗x‖2

2

]
=

1

2W

∫ W

−W
‖ef −QQ∗ef‖2

2 df. (2.21)

22



2.8 Szegő’s Theorem

Toeplitz matrices are of considerable interest in statistical signal processing and informa-

tion theory [56, 54, 104, 91, 73]. An N ×N Toeplitz matrix HN has the form

HN =


h[0] h[−1] h[−2] . . . h[−(N − 1)]
h[1] h[0] h[−1]

h[2] h[1] h[0]
...

... . . .
h[N − 1] · · · h[0]

 (2.22)

orHN [m,n] = h[m−n];m,n ∈ [N ] := {0, 1, . . . , N−1}. The covariance matrix of a discrete-

time wide-sense stationary (WSS) random process is an example of such a matrix. Also the

prolate matrices (defined in (2.11)) are Toeplitz.

Throughout this thesis, we consider HN that is Hermitian, i.e., H∗N = HN , and we

suppose that the eigenvalues ofHN are denoted and arranged as λ0(HN) ≥ · · · ≥ λN−1(HN).

Here the Hermitian transpose of a matrix A is denoted by AH .

Szegő’s theorem [56] describes the collective asymptotic behavior (as N → ∞) of the

eigenvalues of a sequence of Hermitian Toeplitz matrices {HN} by relating to its DTFT

h̃(f) ∈ L2([0, 1]):

h[k] =

∫ 1

0

h̃(f)e−j2πkfdf, k ∈ Z,

h̃(f) =
∞∑

k=−∞

h[k]ej2πkf , f ∈ [0, 1].

Usually h̃(f) is referred to as the symbol or generating function for the N × N Toeplitz

matrices {HN}.

Suppose h̃ ∈ L∞([0, 1]). Szegő’s theorem [56] states that

lim
N→∞

1

N

N−1∑
l=0

ϑ(λl(HN)) =

∫ 1

0

ϑ(h̃(f))df, (2.23)
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where ϑ is any function continuous on the range of h̃. As one example, choosing ϑ(x) = x

yields

lim
N→∞

1

N

N−1∑
l=0

λl(HN) =

∫ 1

0

h̃(f)df.

In words, this says that as N →∞, the average eigenvalue of HN converges to the average

value of the symbol h̃(f) that generates HN . As a second example, suppose h̃(f) > 0 (and

thus λl(HN) > 0 for all l ∈ [N ] and N ∈ N) and let ϑ be the log function. Then Szegő’s

theorem indicates that

lim
N→∞

1

N
log (det (HN)) =

∫ 1

0

log
(
h̃(f)

)
df.

This relates the determinant of the Toeplitz matrix to its symbol.

Szegő’s theorem has been widely used in the areas of signal processing, communications,

and information theory. A paper and review by Gray [54, 55] serve as a remarkable elemen-

tary introduction in the engineering literature and offer a simplified proof of Szegő’s original

theorem. The result has also been extended in several ways. For example, the Avram-Parter

theorem [6, 103], a generalization of Szegő’s theorem, relates the collective asymptotic be-

havior of the singular values of a general (non-Hermitian) Toeplitz matrix to the absolute

value of its symbol, i.e., |h̃(f)|. Tyrtyshnikov [130] proved that Szegő’s theorem holds if

h̃(f) ∈ R and h̃(f) ∈ L2([0, 1]), and Zamarashkin and Tyrtyshnikov [139] further extended

Szegő’s theorem to the case when h̃(f) ∈ R and h̃(f) ∈ L1([0, 1]). Sakrison [108] extended

Szegő’s theorem to high dimensions. Gazzah et al. [52] and Gutiérrez-Gutiérrez and Cre-

spo [59] extended Gray’s results on Toeplitz and circulant matrices to block Toeplitz and

block circulant matrices and derived Szegő’s theorem for block Toeplitz matrices.

2.9 Subspace Angle

To quantify the “distance” between two subspaces with possible different dimensions, we

establish the following definition of angle between subspaces to compare subspaces of possibly
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different dimensions.

Definition 2.3. Let SA and SB be the subspaces formed by the columns of the matrices A

and B respectively. The subspace angle ΘA,B between SA and SB is given by

cos(ΘA,B) := inf
a∈SA,‖a‖2=1

‖PBa‖2

if dim(SB) ≥ dim(SA), or

cos(ΘA,B) := inf
b∈SB ,‖b‖2=1

‖PAb‖2

if dim(SB) < dim(SA). Here PB (or PA) denotes the orthogonal projection onto the column

space of B (or A).

We remark that when the subspaces SA and SB have the same dimension, our definition

of subspace angle coincides to the subspace gap [43], defined as sin(ΘA,B). Smaller ΘA,B

indicates a smaller gap between SA and SB. We also connect our definition of subspace

angle to principal angles between two subspaces defined as follows.

Definition 2.4. [10] Suppose A ∈ RN×p and B ∈ RN×q are orthonormal bases for the

subspaces SA ⊂ RN×N and SB, respectively. Suppose p ≥ q. Then the principal angles

between SA and SB, φ1(A,B) ≤ φ2(A,B) ≤ · · · ≤ φq(A,B), are defined as

cos (φi(A,B)) = σi(A
∗B)

for all i ∈ {1, 2, . . . , q}, where σi(·) denotes the i-th largest singular value.

We note that the subspace angle ΘA,B is equivalent to the largest principal angle φq(A,B).

To see this, we rewrite the smallest singular value:

cos (φq(A,B)) = σq(A
∗B) = inf

‖α‖2=1
‖A∗Bα‖2 = inf

b∈SB ,‖b‖2=1,
‖A∗b‖2 = inf

b∈SB ,‖b‖2=1,
‖PAb‖2 ,

where the last inequality follows because by assumption A is an orthonormal basis for SA.

Thus, our definition of subspace angle captures the largest possible principal angle between

two subspaces.
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2.10 Harmonic Analysis on Locally Compact Abelian Groups

We now provide some basic terminology in group theory and introduce the generalized

Fourier transforms for functions defined on groups.

2.10.1 Groups and Dual Groups

To begin, we first list some necessary definitions related to groups.

Definition 2.5 (Definition 7.1 [25]). A (closed) binary operation, ◦, is a law of composition

that produces an element of a set from two elements of the same set. More precisely, let G

be a set and g1, g2 ∈ G be arbitrary elements. Then (g1, g2)→ g1 ◦ g2 ∈ G.

Definition 2.6 (Definition 7.2 [25]). A group is a set G together with a (closed) binary

operation ◦ such that the following properties hold:

• Associative property: g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 holds for any g1, g2, g3 ∈ G.

• There exists an identity element e ∈ G such that e ◦ g = g ◦ e = g holds for all g ∈ G.

• For any g ∈ G, there is an element g−1 ∈ G such that g−1 ◦ g = g ◦ g−1 = e.

With this definition, it is common to denote a group just by G without mentioning the

binary operation ◦ when it is clear from the context.

Let G denote a locally compact abelian group.2 A locally compact abelian group can be

either discrete or continuous, and either compact or non-compact. A character χξ : G → T

of G is a continuous group homomorphism from G with values in the circle group T :=

{z ∈ C : |z| = 1} satisfying

2To simplify many technical details, we only consider locally compact abelian groups. A locally compact
group is a topological group for which the underlying topology is locally compact and Hausdorff (which is
a topological space in which distinct points have disjoint neighborhoods). An abelian group, also called a
commutative group, is a group in which the result of applying the group operation to two group elements
does not depend on the order. When G is locally compact but neither compact nor abelian, many of our
results still hold but become more complex. For example, even choosing a suitable measure on Ĝ for a
general G is a difficult problem. Only under appropriate conditions can one find an appropriate measure
on Ĝ such that the inversion formula holds.
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|χξ(g)| = 1,

χ∗ξ(g) = χξ(g
−1),

χξ(h ◦ g) = χξ(h)χξ(g).

for any g, h ∈ G. Here χ∗ξ(g) is the complex conjugate of χξ(g). The set of all characters

on G introduces a locally compact abelian group, called the dual group of G and denoted

by Ĝ if we pair (g, ξ) → χξ(g) for all ξ ∈ Ĝ and g ∈ G. In most references the character is

denoted simply by χ rather than by χξ. However, we use here the notation χξ in order to

emphasize that the character can be viewed as a function of two elements g ∈ G and ξ ∈ Ĝ,

and for any ξ ∈ Ĝ, χξ is a function of g. In this sense, χξ(g) can be regarded as the value

of the character χξ evaluated at the group element g. Table 2.1 lists several examples of

groups G, the corresponding binary operation ◦ and the corresponding dual groups Ĝ that

have relevance in signal processing and information theory. Here mod(a, b) = a
b
−ba

b
c, where

bcc is the largest integer that is not greater than c.

Table 2.1: Examples of groups G, along with their dual groups G and Fourier transforms.

group G dual group Ĝ g binary operation ◦ ξ χξ(g)

R R t t1 + t2 F ej2πFt

Rn Rn t t1 + t2 F ej2π〈F ,t〉

unit circle [0, 1) Z t mod(t1 + t2, 1) k ej2πtk

Z unit circle n n1 + n2 f ej2πfn

ZN = N roots of unity ZN = N roots of unity n mod(n1 + n2, N) k ej2π
nk
N

2.10.2 Fourier Transforms

The characters {χξ}ξ∈Ĝ play an important role in defining the Fourier transform for

functions in L2(G). In particular, the Pontryagin duality theorem [106], named after Lev

Semennovich Pontryagin who laid down the foundation for the theory of locally compact

abelian groups, generalizes the conventional CTFT on L2(R) and CT Fourier series for
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periodic functions to functions defined on locally compact abelian groups.

Theorem 2.1 (Pontryagin duality theorem [106]). Let G be a locally compact abelian group

and µ be a Haar measure on G. Let x(g) ∈ L2(G). Then the Fourier transform x̂(ξ) ∈ L2(Ĝ)

is defined by

x̂(ξ) =

∫
G
x(g)χ∗ξ(g) dµ(g).

For each Haar measure µ on G there is a unique Haar measure ν on Ĝ such that the following

inverse Fourier transform holds

x(g) =

∫
Ĝ
x̂(ξ)χξ(g) d ν(ξ).

The Fourier transform satisfies Parseval’s theorem:∫
G
|x(g)|2 dµ(g) =

∫
Ĝ
|x̂(ξ)|2 d ν(ξ).

Only Haar measure and integral on G are considered throughout this paper. We note

that the unique Haar measure ν on Ĝ depends on the choice of Haar measure µ on G. We

illustrate this point with the conventional DFT as an example where g = n ∈ G = ZN ,

ξ = k ∈ Ĝ = ZN , and χξ(g) = ej2π
nk
N . If we choose the counting measure (where each

element of G receives a value of 1) on G, then we must use the normalized counting measure

(where each element of Ĝ receives a value of 1
N
) on Ĝ. The DFT and inverse DFT become

x̂[k] =
N−1∑
n=0

x[n]e−j2π
nk
N ; x[n] =

1

N

N−1∑
k=0

x̂[k]ej2π
nk
N .

One can also choose the semi-normalized counting measure (where each element receives a

value of 1√
N
) on both groups G and Ĝ. This gives the normalized DFT and inverse DFT:

x̂[k] =
1√
N

N−1∑
n=0

x[n]e−j2π
nk
N ; x[n] =

1√
N

N−1∑
k=0

x̂[k]ej2π
nk
N .

For convenience, we rewrite the Fourier transform and inverse Fourier transform as follows

when the Haar measures are clear from the context:

x̂(ξ) =

∫
G
x(g)χ∗ξ(g) d g; x(g) =

∫
Ĝ
x̂(ξ)χξ(g) d ξ.
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We also use F : L2(G) → L2(Ĝ) and F−1 : L2(Ĝ) → L2(G) to denote the operators

corresponding to the Fourier transform and inverse Fourier transform, respectively.

For each group G and dual group Ĝ listed in Table 2.1, the table also includes the

corresponding Fourier transform.

2.10.3 Convolutions

For any x(g), y(g) ∈ L2(G), we define the convolution between x(g) and y(g) by

(x ? y)(g) :=

∫
G
y(h)x(h−1 ◦ g) dh. (2.24)

Similar to what holds in the standard CT and DT signal processing contexts, it is not difficult

to show that the Fourier transform on G also takes convolution to multiplication. That is,

for any x, y ∈ L2(G),

F(x ? y)(ξ) =

∫
G

∫
G
y(h)x(h−1 ◦ g) dh χ∗ξ(g) d g

=

∫
G

∫
G
x(h−1 ◦ g)χ∗ξ(h

−1 ◦ g) d g χ∗ξ(h)y(h) dh

= (Fx)(ξ)(Fy)(ξ)

since
∫
G x(h−1 ◦ g) d g =

∫
G x(g) d g for any x ∈ L2(G) and h ∈ G.
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CHAPTER 3

THE FAST SLEPIAN TRANSFORM

As explained in Section 2.7, the DPSS basis SK (a.k.a the Slepian basis, defined in Sec-

tion 2.6) is the best basis (in a MSE sense) of K columns to represent the discrete vector one

obtains when collecting a finite set of uniform samples from a baseband analog signal, the

motivating example of parameterized subspace model listed in Section 1.2. Thus, the DPSS

basis forms the foundation for the analysis of the parameterized subspace model listed in Sec-

tion 1.2. In this chapter3, we present a fast method for computing approximate projections

and transforms onto the leading DPSS vectors. The complexity of the resulting algorithms

is comparable to the FFT, and scales favorably as the quality of the desired approximation

is increased. In the process of bounding the complexity of these algorithms, we also establish

new nonasymptotic results on the eigenvalue distribution of discrete time-frequency localiza-

tion operators. We also establish new nonasymptotic results on the eigenvalue distribution

of periodic discrete time-frequency localization operators.

3.1 The Eigenvalue Distribution of Discrete Time-Frequency Localization Op-
erators

We begin with non-asymptotic results on the distribution of the DPSS eigenvalues. Com-

paring (2.16) with (2.18) we see that the prolate matrix BN,W and the orthogonal projector

onto the partial Fourier matrix FN,WF ∗N,W share a somewhat similar structure, where BN,W

is a Toeplitz matrix with rows (or columns) given by the sinc function, whereas FN,WF ∗N,W

is a circulant matrix with rows (or columns) given by the digital sinc or Dirichlet function.

In Theorem 3.1, which is proven in Section A.1, we show that up to a small approximation

error ε, the difference between these two matrices has a rank of O(logN log 1
ε
).

3This work is in collaboration with Mark A. Davenport, Santhosh Karnik, Justin Romberg, and Michael B.
Wakin [74, 75, 143].
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Theorem 3.1. Let N ∈ N and W ∈ (0, 1
2
) be given. Then for any ε ∈ (0, 1

2
), there exist

N ×RL matrices L1,L2 and an N ×N matrix EF such that

BN,W = FN,WF
∗
N,W +L1L

∗
2 +EF ,

where

RL ≤ CN log

(
15

ε

)
, CN =

(
4

π2
log(8N) + 6

)
, and ‖EF‖ ≤ ε.

We also note that the proof of Theorem 3.1 provides an explicit construction of the

matrices L1 and L2, which could be of use in practice.

An important consequence of Theorem 3.1 which will be useful to us, and which is also

of independent interest, is that it can be used to establish a nonasymptotic bound on the

number of eigenvalues λ(`)
N,W of BN,W in the “transition region” between ε and 1 − ε. In

particular, Lemma 2.1 tells as that in the limit as N → ∞ we will have that the first

≈ 2NW eigenvalues will approach 1 while the last ≈ N(1− 2W ) eigenvalues will approach

0. However, this does not address precisely how many eigenvalues we can expect to find

between ε and 1− ε.

In [118], it is shown that for any b ∈ R, if k = b2WN+ b
π

logNc, then λ(k)
N,W → (1+eπb)−1

as N → ∞. By setting b = 1
π

log(1
ε
− 1), we get λ(k)

N,W → ε. Similarly, by setting b =

− 1
π

log(1
ε
− 1), we get λ(k)

N,W → 1− ε. This gives us the asymptotic result:

#{` : ε ≤ λ
(`)
N,W ≤ 1− ε} ∼ 2

π2
logN log

(
1

ε
− 1

)
. (3.1)

Figure 3.1 shows a numerical comparison of #{` : ε ≤ λ
(`)
N,W ≤ 1−ε} and 2

π2 logN log
(

1
ε
− 1
)
.

A nonasymptotic bound on the width of this transition region is given in [148], which

shows that for any N ∈ N, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
),

#{` : ε ≤ λ
(`)
N,W ≤ 1− ε} ≤

2
π2 log(N − 1) + 2

π2
2N−1
N−1

ε(1− ε)
.

This bound correctly highlights the logarithmic dependence on N , but can be quite poor

when ε is very small (O(1/ε) as opposed to the O(log(1/ε)) dependence in the asymptotic
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Figure 3.1: The solid lines represent the size of eigenvalue gap for 24 ≤ N ≤ 216, W = 1
4
,

and ε = 10−3, 10−6, 10−9, 10−12. The dashed lines represent the asymptotic result in (3.1).
Note that the size of the eigenvalue gap appears to grow linearly with logN and linearly
with log(1

ε
− 1).

result). In the following corollary of Theorem 3.1, we significantly sharpen this bound in

terms of its dependence on ε to within a constant factor of the optimal asymptotic result.

The intuition behind this result is that Theorem 3.1 demonstrates that BN,W can be ap-

proximated as FN,WF ∗N,W (a matrix whose eigenvalues are all either equal to 1 or 0) plus a

low-rank correction, and the rank of this correction limits the number of possible eigenvalues

in the transition region.

Corollary 3.1. Let N ∈ N and W ∈ (0, 1
2
) be given. Then for any ε ∈ (0, 1

2
),

#{` : ε < λ
(`)
N,W < 1− ε} ≤ 2CN log

(
15

ε

)
.

Here CN is the constant (depending on log(N)) specified in Theorem 3.1.

This result is analogous to the main result of [69], which recently established simi-

lar nonasymptotic results concerning the eigenvalue distribution of the continuous time-

frequency localization operator. In fact, while our approach is quite a bit different than that

of [69], it is also possible to establish a version of Corollary 3.1 (with different constants)

using some of the same proof techniques as [69].
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Finally, we describe a few additional consequences of these results. Recall that BN,W =

SN,WΛN,WS
∗
N,W . From Corollary 3.1 we have that the diagonal entries of the matrix ΛN,W

are mostly very close to 1 or 0, with only a small number of eigenvalues lying in between.

Thus, recalling that SK denotes the N × K matrix containing the first K elements of the

Slepian basis SN,W , it is reasonable to expect that BN,W and SKS∗K (the matrix obtained

by setting the top K eigenvalues to 1 and the remainder to 0) should be within a low-rank

correction when K ≈ 2NW . The following corollary shows that this is indeed the case.

Corollary 3.2. Let N ∈ N and W ∈ (0, 1
2
) be given. For any ε ∈ (0, 1

2
), fix K to be such

that λ(K−1)
N,W > ε and λ(K)

N,W < 1− ε. Then there exist N × r2 matrices U1,U2 and an N ×N

matrix E2 such that

SKS
∗
K = BN,W +U1U

∗
2 +E2,

where

r2 ≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
and ‖E2‖ ≤ ε.

Similarly, consider the rank-K truncated peudoinverse of BN,W where K ≈ 2NW (which

we will denote by B†N,W ). Since most of the first K eigenvalues of BN,W are very close to

1, most of the first K eigenvalues of B†N,W will also be close to 1. Also, most of the last

N −K eigenvalues of BN,W are very close to 0, and by definition the last N −K eigenvalues

of B†N,W are exactly 0. Hence, it is reasonable to expect that BN,W and B†N,W are within a

low-rank correction when K ≈ 2NW . The following corollary shows that this is indeed the

case.

Corollary 3.3. Let N ∈ N and W ∈ (0, 1
2
) be given. For any ε ∈ (0, 1

2
), fix K to be such

that λ(K−1)
N,W > ε and λ(K)

N,W < 1 − ε, and let B†N,W be the rank-K truncated pseudoinverse of

BN,W . Then there exist N × r3 matrices U3,U4 and an N ×N matrix E3 such that

B†N,W = BN,W +U3U
∗
4 +E3,

where
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r3 ≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
and ‖E3‖ ≤ 3ε.

A similar decomposition of the pseudo-inverse of BN,W , also based on a partial Fourier

tranform plus a low rank update, was presented in [95]. Our result above gives an explicit

non-asymptotic bound on the rank of the update required to achieve a certain accuracy.

Also, consider the matrix B(tik)
N,W = (B2

N,W + αI)−1BN,W where α > 0. (Note that this

matrix is associated with Tikhonov regularization, i.e. for a given y ∈ CN , the vector x ∈ CN

which minimizes ‖y −BN,Wx‖2
2 + α‖x‖2

2 is given by x = (B2
N,W + αI)−1BN,Wy = B

(tik)
N,Wy).

Since most of the eigenvalues ofBN,W are either very close to 1 or very close to 0, most of the

eigenvalues of B(tik)
N,W are either very close to 1

1+α
or very close to 0. Hence, it is reasonable to

expect that 1
1+α
BN,W and B(tik)

N,W are within a low-rank correction. The following corollary

shows that this is indeed the case.

Corollary 3.4. Let N ∈ N and W ∈ (0, 1
2
) and α > 0 be given, and define B(tik)

N,W =

(B2
N,W + αI)−1BN,W . Then, for any ε ∈ (0, 1

2
), there exists an N × r4 matrix U5 and an

N ×N matrix E4 such that

B
(tik)
N,W =

1

1 + α
BN,W +U5U

∗
5 +E4,

where

r4 ≤
(

8

π2
log(8N) + 12

)
log

(
15

min(α(1 + α)ε, 1
3
ε)

)
and ‖E4‖ ≤ ε.

In Section 3.2, we will use Theorem 3.1 along with Corollaries 3.2, 3.3, and 3.4 to derive

fast algorithms for working with the Slepian basis.

3.2 The Fast Slepian Transform

A fast factorization of SKS∗K

Suppose we wish to compress a vector x ∈ CN of N uniformly spaced samples of a signal

down to a vector of K ≈ 2NW elements in such a way that best preserves the DTFT of

the signal over |f | ≤ W . We can do this by storing S∗Kx, which is a vector of K < N
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elements, and then later recovering SKS∗Kx, which contains nearly all of the energy of the

signal in the frequency band |f | ≤ W . However, naïve multiplication of SK or S∗K takes

O(NK) = O(2WN2) operations. For certain applications, this may be intractable.

If we combine the results of Corollary 3.2 along with that of Theorem 3.1, we get that

SKSK = BN,W +U1U
∗
2 +E2

= FN,WF
∗
N,W +L1L

∗
2 +U1U

∗
2 +E1 +E2

= T1T
∗
2 +E1 +E2

where

T1 =

[
FN,W L1 U1

]
and T2 =

[
FN,W L2 U2

]
.

Both T1 and T2 are N ×K ′ matrices where

K ′ = 2NW ′ + r1 + r2 ≤ d2NW e+

(
12

π2
log(8N) + 18

)
log

(
15

ε

)
.

So we can compress x by computing T ∗2 x, which is a vector of K ′ ≈ 2NW elements, and

then later recover T1T
∗
2 x. By using the triangle inequality, we have ‖SKS∗K − T1T

∗
2 ‖ =

‖E1 + E2‖ ≤ ‖E1‖ + ‖E2‖ ≤ 2ε. Hence, ‖SKS∗Kx − T1T
∗
2 x‖2 ≤ 2ε‖x‖2 for any vector

x ∈ CN . Both FN,W and F ∗N,W can be applied to a vector in O(N logN) operations via the

FFT. Since L1, L2, U1, and U2 are N × O(logN log 1
ε
) matrices, L1, L∗2, U1, and U ∗2 can

each be applied to a vector in O(N logN log 1
ε
) operations. Therefore, computing T ∗2 x and

later recovering T1T
∗
2 x (as an approximation for SKS∗Kx) takes O(N logN log 1

ε
) operations.

Fast projections onto the range of SK

Alternatively, if we only require computing the projected vector SKS∗Kx, and compression

is not required, then there is a simpler solution. Corollary 3.2 tells us that ‖SKS∗K−(BN,W +

U1U
∗
2 )‖ ≤ ε, and thus, ‖SKS∗Kx − (BN,Wx + U1U

∗
2x)‖2 ≤ ε‖x‖2 for any vector x ∈ CN .

Since BN,W is a Toeplitz matrix, computing BN,Wx can be done in O(N logN) operations

via the FFT. Since U1 and U2 are N × O(N logN log 1
ε
) matrices, computing U1U

∗
2x can
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be done in O(N logN log 1
ε
) operations. Therefore, we can compute BN,Wx+U1U

∗
2x as an

approximation to SKS∗Kx using only O(N logN log 1
ε
) operations.

Fast rank-K truncated pseudoinverse of BN,W

A closely related problem to working with the matrix SKS∗K concerns the task of solving

a linear system of the form y = BN,Wx. Since the prolate matrix has several eigenval-

ues that are close to 0, the system is often solved by using the rank-K truncated pseu-

doinverse of BN,W where K ≈ 2NW . Even if the pseudoinverse is precomputed and

factored ahead of time, it still takes O(NK) = O(2WN2) operations to apply to a vec-

tor y ∈ CN . Corollary 3.3 tells us that ‖B†N,W − (BN,W + U3U
∗
4 )‖ ≤ 3ε, and thus,

‖B†N,Wy − (BN,Wy + U3U
∗
4y)‖2 ≤ 3ε‖y‖2 for any vector y ∈ CN . Again, computing

BN,Wy can be done in O(N logN) operations using the FFT, and computing U3U
∗
4y can

be done in O(N logN log 1
ε
) operations. Therefore, we can compute BN,Wy +U3U

∗
4y as an

approximation to B†N,Wy using only O(N logN log 1
ε
) operations.

Fast Tikhonov regularization involving BN,W

Another approach to solving the ill-conditioned system y = BN,Wx is to use Tikhonov

regularization, i.e., minimize ‖y − BN,Wx‖2
2 + α‖x‖2

2 where α > 0 is a regularization pa-

rameter. The solution to this minimization problem is x = (B2
N,W + αI)−1BN,Wy. Even

if the matrix B(tik)
N,W = (B2

N,W + αI)−1BN,W is computed ahead of time, it still takes O(N2)

operations to apply to a vector y. Corollary 3.4 tells us that ‖B(tik)
N,W − (BN,W +U5U

∗
5 )‖ ≤ ε,

and thus, ‖B(tik)
N,Wy − (BN,Wy + U5U

∗
5y)‖2 ≤ ε‖y‖2 for any vector y ∈ CN . Again, com-

puting BN,Wy can be done in O(N logN) operations via the FFT. Since U5 has size N ×

O
(
logN max(log 1

αε
, log 1

ε
)
)
, computing U5U

∗
5y can be done in O(N logN max(log 1

αε
, log 1

ε
))

operations. Therefore, we can compute BN,Wy + U5U
∗
5y as an approximation to B(tik)

N,Wy

using only O
(
N logN max(log 1

αε
, log 1

ε
)
)
operations.

The least-squares problems above involve the inverse of BN,W , a symmetric semi-definite

Toeplitz matrix. There is a long history of “superfast” algorithms for inverting such systems
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in the signal processing [98, 72] and numerical linear algebra [4, 62, 8] literature. These

algorithms take a number of different forms. They usually work by breaking the matrix into

smaller blocks, either hierarchically [94] or recusively [9, 102], and then exploiting the struc-

ture of the matrix to efficiently combine the solutions of smaller systems into a solution for

the entire system. The overall computational complexity of these algorithms is O(N log2N)

for the first solve with a given matrix, and O(N logN) for subsequent solves. An overview

of these methods can be found in [129].

The approach suggested by Corollary 3.3 (and the regularized version in Corollary 3.4)

have the same run time of O(N logN), but are based on entirely different principles. The-

orem 3.1 essentially states that the matrix BN,W is a low-rank update away from an ortho-

projection, and this orthoprojection can be computed quickly using the FFT. Corollaries

3.3 and 3.4 show that this property also holds for the (regularized) pseudo-inverse. These

mathematical results show that this particular system can be very closely approximated by

a sum of circulant and low-rank matrices, which leads directly to efficient algorithms for

solving least-squares problems.

3.3 Applications

Owing to the concentration in the time and frequency domains, the Slepian basis vectors

have proved to be useful in numerous signal processing problems [2, 32, 118, 140, 31]. Linear

systems of equations involving the prolate matrix BN,W also arise in several problems, such

as band-limited extrapolation [118]. In this section, we describe some specific applications

that stand to benefit from the fast constructions described above.

i. Representation and compression of sampled bandlimited and multiband

signals. Consider a length-N vector x obtained by uniformly sampling a baseband analog

signal x(t) over the time interval [0, NTs) with sampling period Ts ≤ 1
Bband

chosen to satisfy

the Nyquist sampling rate. Here, x(t) is assumed to be bandlimited with frequency range

[−Bband/2, Bband/2]. Under this assumption, the sample vector x can be expressed as
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x[n] =

∫ W

−W
X(f)ej2πfn df, n = 0, 1, . . . , N − 1, (3.2)

or equivalently,

x =

∫ W

−W
X(f)ef df (3.3)

where W = TsBband/2 ≤ 1
2
and X(f) is the DTFT of the infinite sample sequence x[n] =

x(nTs), n ∈ Z. Such finite-length vectors of samples from bandlimited signals arise in prob-

lems such as time-variant channel estimation [140] and mitigation of narrowband interference

[29]. Solutions to these and many other problems benefit from representations that efficiently

capture the structure inherent in vectors x of the form (3.3).

In [32], the authors showed that such a vector x has a low-dimensional structure by

building a dictionary in which x can be approximated with a small number of atoms. The

N × N DFT basis is insufficient to capture the low dimensional structure in x due to the

“DFT leakage” phenomenon. In particular, the DFT basis is comprised of vectors ef with

f sampled uniformly between −1/2 and 1/2. From (3.3), one can interpret x as being

comprised of a linear combination of vectors ef with f ranging continuously between −W

and W . It is natural to ask whether x could be efficiently represented using only the DFT

vectors ef with f between −W and W ; in particular, these are the columns of the matrix

FN,W defined in (2.17). Unfortunately, this is not the case—while a majority of the energy

of x can be captured using the columns of FN,W , a nontrivial amount will be missed and

this is contained in the familiar sidelobes in the DFT outside the band of interest.

An efficient alternative to the partial DFT FN,W is given by the partial Slepian basis SK

when K ≈ 2NW . In [32], for example, it is established that when x is generated by sampling

a bandlimited analog random process with flat power spectrum over [−Bband/2, Bband/2],

and when one chooses K = 2NW (1 + ε), then on average SKS∗Kx will capture all but

an exponentially small amount of the energy from x. Zemen and Mecklenbräuke [140]

showed that expressing the time-varying subcarrier coefficients in a Slepian basis yields better
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performance than that obtained with a DFT basis, which suffers from frequency leakage.

By modulating the (baseband) Slepian basis vectors to different frequency bands and

then merging these dictionaries, one can also obtain a new dictionary that offers an efficient

representation of sampled multiband signals. Zemen et al. [141] proposed one such dictionary

for estimating a time-variant flat-fading channel whose spectral support is a union of several

intervals. In the context of compressive sensing, Davenport and Wakin [32] investigated

multiband modulated DPSS dictionaries for sparse recovery of sampled multiband signals,

and Sejdić et al. [110] applied such dictionaries for recovery of physiological signals from

compressive measurements. In Chapter 5, we employed such dictionaries for detecting targets

behind the wall in through-the-wall radar imaging, and modulated DPSS’s can also be useful

for mitigating wall clutter [2].

In summary, many of the above mentioned problems are facilitated by projecting a length-

N vector onto the subspace spanned by the first K ≈ 2NW Slepian basis vectors (i.e.,

computing SKS∗Kx). One version of the Block-Based CoSaMP algorithm in [32] involves

computing the projection of a vector onto the column space of a modulated DPSS dictio-

nary. The channel estimates proposed in [111] are based on the projection of the subcarrier

coefficients onto the column space of the modulated multiband DPSS dictionary. Of course,

one can also compress x by keeping the ≈ 2NW Slepian basis coefficients S∗Kx instead of

the N entries of x. Computationally, all of these problems benefit from having a fast Slepian

transform: whereas direct matrix-vector multiplication would require O(2NW ·N) = O(N2)

operations, the fast Slepian constructions allow these computations to be approximated in

only O
(
N logN log 1

ε

)
operations.

ii. Prolate matrix linear systems. Linear equations of the form BN,Wy = b arise

naturally in signal processing. For example, suppose we obtain the length-N sampled ban-

dlimited vector x as defined in (3.2) and we are interested in estimating the infinite-length

sequence x[n] = x(nTs), ∀n ∈ Z. The discrete-time signal x[n] is assumed to be bandlim-

ited to [−W,W ] for W < 1
2
. Let IN : `2(Z) → CN denote the index-limiting operator
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that restricts a sequence to its entries on [N ] (and produces a vector of length N); that

is IN(y)[m] := y[m] for all m ∈ {0, 1, . . . , N − 1}. Also, recall that BW : `2(Z) → `2(Z)

denotes the band-limiting operator that bandlimits the DTFT of a discrete-time signal to

the frequency range [−W,W ]. Given x, the least-squares estimate x̂[n] ∈ l2(Z) for the

infinite-length bandlimited sequence takes the form

x̂[n] = [(INBW )†x][n] =
N−1∑
m=0

v[m]
sin 2πW (n−m)

π(n−m)
,

where v = B†N,Wx.

Another problem involves linear prediction of bandlimited signals based on past samples.

Suppose x(t) is a continuous, zero-mean, wide sense stationary random process with power

spectrum

Px(F ) =

{
1

Bband
, −Bband

2
≤ F ≤ Bband

2
,

0, otherwise.

Let x[n] = x(nTs) denote the samples acquired from x(t) with a sampling interval of Ts ≤
1

Bband
. A linear prediction of x[N ] based on the previous N samples x[0], x[1], . . . , x[N − 1]

takes the form [118]

x̂[N ] =
N−1∑
n=0

anx[n].

Choosing an such that x̂[N ] has the minimum mean-squared error is equivalent to solving

min
an

% := E

(N−1∑
n=0

anx[n]− x[N ]

)2
 .

Let W = Ts
2Bband

. Taking the derivative of % and setting it to zero yields

BN,Wa = b

with a = [a0 a1 · · · aN−1]T and b =
[

sin(2πWN)
πN

sin(2πW (N−1))
π(N−1)

· · · sin(2πW1)
π1

]T
. Thus the opti-

mal â is simply given by â = B†N,Wb.
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We present one more example: the Fourier extension [68]. The partial Fourier series sum

yN ′(t) =
1√
2

∑
|n|≤N ′

ŷne
jnπt, ŷn =

1√
2

∫ 1

−1

y(t)e−jnπtdt

of a non-periodic function y ∈ L2
[−1,1] (such as y(t) = t) suffers from the Gibbs phenomenon.

One approach to overcome the Gibbs phenomenon is to extend the function y to a function

g that is periodic on a larger interval [−T, T ] with T > 1 and compute the partial Fourier

series of g [68]. Let GN ′′ be the space of bandlimited 2T -periodic functions

GN ′′ :=

{
g : g(t) =

N ′′∑
n=−N ′′

ĝne
jnπt
T , ĝn ∈ C

}
.

The Fourier extension problem involves finding

gN ′′ := arg min
g∈GN′′

‖y − g‖L2
[−1,1]

. (3.4)

The solution gN ′′ is called the Fourier extension of y to the interval [−T, T ]. Let ĝ =

[ĝ−N ′′ · · · ĝ0 · · · ĝN ′′ ]T and define FN ′′ : L2([−1, 1])→ C2N ′′+1 as

(FN ′′(u))[n] =
1√
2T

∫ 1

−1

u(t)e−
jnπt
T dt, |n| ≤ N ′′.

For convenience, here we index all vectors and matrices beginning at −N ′′. Any minimizer

ĝ of the least-squares problem (3.4) must satisfy the normal equations

FN ′′F∗N ′′ ĝ = FN ′′y, (3.5)

where FN ′′y can be efficiently approximately computed via the FFT. One can show that

FN ′′F∗N ′′ = BN,W , where N = 2N ′′ + 1 and W = 1
2T
≤ 1

2
.

Each of the above least-squares problems could be solved by computing a rank-K trun-

cated pseudo-inverse of BN,W with K ≈ 2NW . Direct multiplication of this matrix with a

vector, however, would require O(2NW ·N) = O(N2) operations. The fast methods we have

developed allow a fast approximation to the truncated pseudo-inverse to be applied in only
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O
(
N logN log 1

ε

)
operations.

3.4 Simulations

In this section, we present several numerical simulations comparing our fast, approximate

algorithms to the exact versions.

Fast projection onto the span of SK

To test our fast factorization of SKS∗K and our fast projection method, we fix the half-

bandwidth W = 1
4
and vary the signal length N over several values between 28 and 220.

For each value of N we randomly generate several length-N vectors and project each one

onto the span of the first K = round(2NW ) elements of the Slepian basis using the fast

factorization T1T
∗
2 and the fast projection matrix BN,W +U1U

∗
2 for tolerances of ε = 10−3,

10−6, 10−9, and 10−12. The prolate matrix, BN,W , is applied to the length N vectors via an

FFT whose length is the smallest power of 2 that is at least 2N . For values of N ≤ 12288,

we also projected each vector onto the span of the first K elements of the Slepian basis using

the exact projection matrix SKS∗K . The exact projection could not be tested for values of

N > 12288 due to computational limitations. A plot of the average time needed to project

a vector onto the span of the first K = round(2NW ) elements of the Slepian basis using

the exact projection matrix SKS∗K and the fast factorization T1T
∗
2 is shown in the top left

in Figure 3.2. A similar plot comparing the exact projection SKS∗K and the fast projection

BN,W +U1U
∗
2 is shown in the top right in Figure 3.2. As can be seen in the figures the time

required by the exact projection grows quadratically with N , while the time required by the

fast factorization as well as the fast projection grows roughly linearly in N .

For the exact projection, all of the first K = round(2NW ) elements of the Slepian basis

must be precomputed. For the fast factorization, the low rank matrices L1,L2 (from Theo-

rem 3.1) and the Slepian basis elements s(`)
N,W for which ε < λ

(`)
N,W < 1− ε are precomputed.

For the fast projection, the FFT of the sinc kernel, as well as the Slepian basis elements

s
(`)
N,W for which ε < λ

(`)
N,W < 1 − ε are precomputed. A plot of the average precomputation
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time needed for both the exact projection SKS∗K as well as the fast factorization T1T
∗
2 is

shown in the top left in Figure 3.3. A similar plot comparing the exact projection SKS∗K

and the fast projection BN,W + U1U
∗
2 is shown in the top right in Figure 3.3. As can be

seen in the figures the precomputation time required by the exact projection grows roughly

quadratically with N , while the precomputation time required by the fast factorization as

well as the fast projection grows just faster than linearly in N .

This experiment was repeated withW = 1
16

andW = 1
64

(instead ofW = 1
4
). The results

for W = 1
16

and W = 1
64

are shown in the middle and bottom, respectively, of Figures Fig-

ure 3.2 and Figure 3.3. The exact projection onto the first K ≈ 2NW elements of the

Slepian basis takes O(NK) = O(2WN2) operations, whereas both our fast factorization and

fast projection algorithms take O(N logN log 1
ε
) operations. The smaller W gets, the larger

N needs to be for our fast methods to be faster than the exact projection via matrix multi-

plication. If W . 1
N

logN log 1
ε
, then our fast methods lose their computational advantage

over the exact projection. However, in this case the exact projection is fast enough to not

require a fast approximate algorithm.

Solving least-squares systems involving BN,W

We demonstrate the effectiveness of our fast prolate pseudoinverse method (Corollary 3.3)

and our fast prolate Tikhonov regularization method (Corollary 3.4) on an instance of the

Fourier extension problem, as described in Section 3.3.

To choose an appropriate function f , we note that if f is continuous and f(−1) = f(1),

then the Fourier sum approximations will not suffer from Gibbs phenomenon, and so, there

is no need to compute a Fourier extension sum approximation for f . Also, if f is smooth on

[−1, 1] but f(−1) 6= f(1), then the Fourier sum approximations will suffer from Gibbs phe-

nomenon, but the Fourier extension series coefficients will decay exponentially fast. Hence,

relatively few Fourier extension series coefficients will be needed to accurately approximate f ,

which makes the least squares problem of solving for these coefficients small enough for our

fast methods to not be useful. However, in the case where f is continuous but not smooth
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Figure 3.2: (Left) Plots of the average time needed to project a vector onto the first
round(2NW ) Slepian basis elements using the exact projection SKS∗K and using the fast
factorization T1T

∗
2 . (Right) Plots of the average time needed to project a vector onto the

first round(2NW ) Slepian basis elements using the exact projection SKS∗K and using the
fast projection BN,W +U1U

∗
2 .
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Figure 3.3: (Left) Plots of the average precomputation time for the exact projection SKS∗K
and the fast factorization T1T

∗
2 . (Right) Plots of the average precomputation time for the

exact projection SKS∗K and the fast projection BN,W +U1U
∗
2 .
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on [−1, 1] and f(−1) 6= f(1), the Fourier series will suffer from Gibbs phenomenon, and the

Fourier extension series coefficients will decay faster than the Fourier series coefficients, but

not exponentially fast. So in this case, the number of Fourier extension series coefficients

required to accurately approximate f is not trivially small, but still less than the number of

Fourier series coefficients required to accurately approximate f . Hence, computing a Fourier

extension sum approximation to f is useful and requires our fast methods.

We construct such a function f : [−1, 1]→ R in the form

f(t) = a0t+
L∑
`=1

a` exp(− |t−µ`|
σ`

) (3.6)

where a0 = 5, L = 500, and a`, µ`, and σ` are chosen in a random manner. A plot of f(t)

over t ∈ [−1, 1] is shown on the left in Figure 3.4. Also on the right in Figure 3.4, we show

an example of a Fourier sum approximation and a Fourier extension approximation, both

with 401 terms. Notice that the Fourier sum approximation suffers from Gibbs phenomenon

near the endpoints of the interval [−1, 1], while the Fourier extension approximation does

not exhibit such oscillations near the endpoints of [−1, 1].
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Figure 3.4: (Left) A plot of the function used in the experiments described in (3.6). (Right)
Plots of the function, the Fourier sum approximation to f(t) using 401 terms, and the Fourier
extension approximation to f(t) using 401 terms. Note that the Fourier sum approximation
suffers from Gibbs phenomenon oscillations while the Fourier extension sum does not.

46



For several positive integers M between 1 and 2560, we compute three approximations

to f(t):

1. The 2M + 1 term truncated Fourier series of f(t), i.e.,

fM(t) =
1√
2

M∑
m=−M

f̂me
jπmt, where f̂m =

1√
2

∫ 1

−1

f(t)ejπmt dt.

2. The 2M + 1 term Fourier extension of f(t) to the interval [−T, T ], i.e.,

gM(t) =
1√
2T

M∑
m=−M

ĝme
jπmt/T ,

where ŷm =
1√
2T

∫ 1

−1
f(t)ejπmt/T dt and ĝ = B†

(2M+1),
1

2T

ŷ. Here, we pick T = 1.5,

and we let B†
(2M+1),

1
2T

be the truncated pseudoinverse of B
(2M+1),

1
2T

which zeros out

eigenvalues smaller than 10−4.

3. The 2M +1 term Fourier extension of f(t) to the interval [−T, T ] (as described above),

except we use the fast prolate pseudoinverse method (Corollary 3.3) with tolerance

ε = 10−5 instead of the exact truncated pseudoinverse.

The integrals used in computing the coefficients are approximated using an FFT of length

213+q where q = blog2Mc. By increasing the FFT length with M , we ensure that the coef-

ficients are sufficiently approximated, while also ensuring that the time needed to compute

the FFT does not dominate the time needed to solve the system B
(2M+1),

1
2T
ĝ = ŷ. Given an

approximation f̂(t) to f(t), we quantify the performance via the relative root-mean-square

(RMS) error:

‖f − f̂‖L2[−1,1]

‖f‖L2[−1,1]

A plot of the relative RMS error versus M for each of the three approximations to f(t)

is shown on the left in Figure 3.5. For values of M at least 448, the Fourier extension gM(t)
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(computed with either the exact or the fast pseudoinverse) yielded a relative RMS error

at least 10 times lower than that for the truncated Fourier series fM(t). Using the exact

pseudoinverse instead of the fast pseudoinverse does not yield a noticable improvement in

the approximation error. A plot of the average time needed to compute the approximation

coefficients versus M is shown on the right in Figure 3.5. For large M , computing the

Fourier extension coefficients using the fast prolate pseudoinverse is significantly faster than

computing the Fourier extension coefficients using the fast prolate pseudoinverse. Also,

computing the Fourier extension coefficients using the fast prolate pseudoinverse takes only

around twice the time required for computing the Fourier series coefficients.
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Figure 3.5: A comparison of the relative RMS error (left) and the computation time required
(right) for the 2M + 1 term truncated Fourier series as well as the 2M + 1 term Fourier
extension using both the exact and fast pseudoinverse methods. Note that the exact and
fast methods are virtually indistinguishable in terms of relative RMS error.

We repeated this experiment, except using Tikhonov regularization to solve the system

B
(2M+1),

1
2T
ĝ = ŷ instead of the truncated pseudoinverse. We tested both the exact Tikhonov

regularization procedure ĝ = (B2

(2M+1),
1

2T

+ αI)−1B
(2M+1),

1
2T
ŷ (for α = 10−8) as well as the

fast Tikhonov regularization method (Corollary 3.4) with a tolerance of ε = 10−5. The

results, which are similar to those for the pseudoinverse case, are shown in Figure 3.6.
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Figure 3.6: A comparison of the relative RMS error (left) and the computation time required
(right) for the 2M + 1 term truncated Fourier series as well as the 2M + 1 term Fourier
extension using both the exact and fast Tikhonov regularization methods. Note that the
exact and fast methods are virtually indistinguishable in terms of relative RMS error.

3.5 The Eigenvalue Distribution of Discrete Periodic Time-Frequency Limiting
Operators

The periodic discrete prolate spheroidal sequences (PDPSS’s), introduced by Jain and

Ranganath [71] and Grünbaum [57], are the counterparts of the PSWF’s in the finite di-

mensional case. The PDPSS’s are the finite-length vectors whose discrete Fourier transform

(DFT) is most concentrated in a given bandwidth. Being simultaneously concentrated in

the time and frequency domains makes these vectors useful in a number of signal processing

applications. For example, Jain and Ranganath used PDPSS’s for extrapolation and spectral

estimation of periodic discrete-time signals [71]. PDPSS’s were also used for limited-angle

reconstruction in tomography [57], for Fourier extension [95], and in [65], the bandpass

PDPSS’s were used as a numerical approximation to the bandpass PSWF’s for studying

synchrony in sampled EEG signals.

The distribution of the eigenvalues of a time-frequency limiting operator dictate the

(approximate) dimension of the space of signals which are bandlimited and approximately

timelimited [120, 118]. Such distributions are known for the case of PSWF’s and DPSS’s.

Specifically, an asymptotic expression for the PSWF eigenvalues was given in [116], and

more recently, Israel [69] provided a non-asymptotic bound. Slepian [118] first provided
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an asymptotic expression for the DPSS eigenvalues. In [75], we recently provided a non-

asymptotic result for the distribution of the DPSS eigenvalues (which improves upon a

previous result in [148]).

There exist comparatively few results concerning the PDPSS eigenvalues. In [137], it was

shown that unlike the PSWF and DPSS eigenvalues, the PDPSS eigenvalues can exactly

achieve 0 and 1 and are degenerate in some cases. A non-asymptotic result on the distri-

bution of the PDPSS eigenvalues was given in [45]. The special distribution of the PDPSS

eigenvalues (See Figure 3.7) has been exploited for fast computing Fourier extensions of ar-

bitrary extension length in [95]. In this paper, we provide a finer non-asymptotic result that

improves upon the expression in [45]. We also characterize the spectrum of submatrices of

the DFT matrix (see Corollary 3.5), which is of independent interest in signal processing.

For example, the low rank of DFT submatrices can be exploited for efficiently computing

DFT [45].

With abuse of notation4, let TN : CM → CM denote a time-limiting operator that only

keeps the first N ≤M entries of a vector, i.e., for any x ∈ CM ,

(TN(x))[n] :=

{
x[n], 0 ≤ n ≤ N − 1,

0, N ≤ n ≤M − 1.

The DFT of any x ∈ CM , denoted by x̂ ∈ CM , is defined as

x̂[n] :=
1√
M

M−1∑
m=0

x[m]e−j
2πnm
M , n ∈ [M ],

where [M ] = {0, . . . ,M − 1}. Given x̂, x can be recovered by taking the inverse DFT

(IDFT), i.e.,

x[m] =
1√
M

M−1∑
n=0

x̂[n]ej
2πnm
M , m ∈ [M ].

Suppose K ∈ N such that 2K + 1 < M . Let BK : CM → CM denote a band-limiting

operator that first zeros out the DFT of a vector outside the index range IK := {0, . . . , K}∪

4In this section, the time- and band-limiting operators are slightly different than the ones in Section 2.5. But
it should be clear to distinguish them from the context.

50



{M −K, . . . ,M − 1}, then returns the corresponding signal in the time domain by taking

the IDFT. That is

(BK(x))[m] :=
1√
M

∑
k∈IK

x̂[k]ej
2πkm
M

=
1

M

∑
k∈IK

M−1∑
n=0

x[n]e−j
2πnk
M ej

2πkm
M

=
M−1∑
n=0

sin ((2K + 1)(m− n)π/M)

M sin ((m− n)π/M)
x[n].

Denote W = 2K+1
2M

< 1
2
. Let BM,W ∈ CM×M denote a prolate matrix with entries

BM,W [m,n] =
sin (2πW (m− n))

M sin ((m− n)π/M)
, m, n ∈ [M ].

Note that BK is equivalent to BM,W , whose eigenvectors are given by the PDPSS’s [71, 57].

Let [BM,W ]N ∈ CN×N be the leading principal submatrix of BM,W constructed by remov-

ing the last M −N rows and columns from BM,W . Composing the time- and band-limiting

operators, we obtain the linear operator TNBKTN : CM → CM , which has the same non-zero

eigenvalues as [BM,W ]N . Similar to the case for the DPSS’s which can be obtained efficiently

and numerically stably by computing the eigenvectors of a tridiagonal matrix [118], Grün-

baum [57] showed that the prolate matrix [BM,W ]N commutes with a tridiagonal matrix,

providing a stable and reliable method for computing the PDPSS’s.

In the rest of this section, we assume 2K + 1 < M , which is of practical interest for

applications (e.g., [71, 57, 65]). Let 1 ≥ λ
(0)
N ≥ λ

(1)
N ≥ · · ·λ

(N−1)
N ≥ 0 denote the eigenvalues

of [BM,W ]N , where the upper and lower bounds follow because

‖x‖2 ≥ x∗BM,Wx =
∑
k∈IK

|x̂[k]|2 ≥ 0

for all x ∈ CM , indicating that the eigenvalues of BM,W are between 0 and 1 (and thus so

are the eigenvalues of [BM,W ]N by the Sturmian separation theorem [67]). We note that

when 2K+1 > M , it is possible that some eigenvalues λ(`)
N ≥ 1; see [137] for more discussion
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on this.

We establish the following results (whose proof is given in Appendix A.7) concerning the

eigenvalue distribution for [BM,W ]N .

Theorem 3.2. (Spectrum concentration for [BM,W ]N) For any M,N,K ∈ N, suppose N <

M and W = 2K+1
2M

< 1
2
. Then for any ε ∈ (0, 1

2
), we have

λ
(2bNW c−R(N,M,ε))
N ≥ 1− ε, λ(2bNW c+R(N,M,ε)+1)

N ≤ ε,

and

#{` : ε < λ
(`)
N < 1− ε} ≤ 2R(N,M, ε),

where

R(N,M, ε) =

(
4

π2
log(8N) + 6

)
log

(
16

ε

)
+ 2 max

− log
(
π
32

((
M
N

)2 − 1
)
ε
)

log
(
M
N

) , 0

 .

In words, Theorem 3.2 implies that the first ≈ (2K+1)N
M

eigenvalues tend to cluster very

close to one, while the remaining eigenvalues tend to concentrate about zero, after a narrow

transition band of width O(log 1
ε

logN).5 Figure 3.7(a) presents an example to illustrate

this phenomenon. We note that this phenomenon has been utilized in [95] for efficiently

computing Fourier extensions. A similar bound on the width of the transition band is given

in [45], which shows

#
{
` : ε ≤ λ

(`)
N ≤ 1− ε

}
∼ O(logN). (3.7)

This bound highlights the logarithmic dependence on N , but ignores the dependence on6 ε.

Theorem 3.2 improves (3.7) by showing also the logarithmic dependence on ε. Figure 3.7(b)

shows the size of thetransition band for different N and ε, illustrating that the size is pro-

5O(·) denotes the standard “big-O” notation.
6With simple manipulation, this bound states O(1/ε) dependence on ε, which is quite large when ε is very
small.
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Figure 3.7: (a) Eigenvalues of the prolate matrix [BM,W ]N withM = 1024, N = 256, K = 128

so that (2K+1)N
M

≈ 64 (dashed line); (b) Width of the transition band #{` : ε < λ
(`)
N < 1− ε}

for N = 1
4
M,K = 1

8
M , and ε = 10−3, 10−6, 10−9, 10−12.

portional to log 1
ε

logN .

Theorem 3.2 also has implications regarding the distribution of singular values of subma-

trices of the DFT matrix. Specifically, let FM be the normalized DFT matrix with entries

given by

FM [m,n] =
1√
M
e−j2π

mn
M , m, n ∈ [M ].

Let L = M
p
be an integer and let FM |p denote an L×L submatrix of FM obtained by deleting

any consecutive M −L columns and any consecutive M −L rows of FM . Edelman et al. [45]

proposed an approximate algorithm for DFT computations with lower communication cost

based on the compressibility (low rank) of the blocks of FM , i.e., FM |p. Let 1 ≥ σ(0) ≥

· · · ≥ σ(L−1) ≥ 0 denote the singular values of FM |p. For any ε ∈
(
0, 1

2

)
, similar to (3.7),

#
{
` :
√
ε ≤ σ(`) ≤

√
1− ε

}
∼ O(logL) is given in [45]. The following result (which is proved

in Appendix A.8) establishes a finer non-asymptotic bound (that highlights the logarithmic

dependence on ε) for this width.

Corollary 3.5. For any M, p ∈ N such that L = M
p
is an integer, let FM |p denote an L×L

submatrix of the normalized DFT matrix FM obtained by deleting any consecutive M − L

columns and any consecutive M −L rows of FM . Let σ(0) ≥ · · · ≥ σ(L−1) denote the singular
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values of FM |p. Then for any ε ∈ (0, 1
2
),

σ(2b L
2p
c−R(L,M,ε)) ≥

√
1− ε, σ(2b L

2p
c+R(L,M,ε)+1) ≤

√
ε,

and

#
{
`,
√
ε < σ(`) <

√
1− ε

}
≤ 2R (L,M, ε) ,

where R(·, ·, ·) is specified in Theorem 3.2.

54



CHAPTER 4

ROAST: RAPID ORTHOGONAL APPROXIMATE SLEPIAN TRANSFORM

In the last chapter, we proposed a fast method for computing approximate projections

onto the leading DPSS vectors and compressing a signal to the corresponding low dimension.

Despite its favorable properties, the fast algorithm presented in Chapter 3 does not corre-

spond to an orthogonal projection. In this chapter7, we provide an alternative subspace—

which enables a fast transform named Rapid Orthogonal Approximate Slepian Transform

(ROAST)—for the discrete vector one obtains when collecting a finite set of uniform sam-

ples from a baseband analog signal (one of the parameterized subspace models listed in

Section 1.2). The ROAST offers an orthogonal projection which is an approximation to the

orthogonal projection onto the leading DPSS vectors. As such, the ROAST is guaranteed

to accurately and compactly represent not only oversampled bandlimited signals but also

the leading DPSS vectors themselves. Moreover, the subspace angle between the ROAST

subspace and the corresponding DPSS subspace can be made arbitrarily small. The com-

plexity of computing the representation of a signal using the ROAST is comparable to the

FFT, which is much less than the complexity of using the DPSS basis vectors. We also

give non-asymptotic results to guarantee that the proposed basis not only provides a very

high degree of approximation accuracy in a mean-square error sense for bandlimited sample

vectors, but also that it can provide high-quality approximations of all sampled sinusoids

within the band of interest.

4.1 Construction of ROAST and Relation to the DPSS Subspace

In the last chapter, we demonstrated a fast method to approximately project an arbitrary

vector onto the subspace spanned by the first slightly more than 2NW eigenvectors of BN,W

7This work is in collaboration with Mark A. Davenport, Santhosh Karnik, Justin Romberg, and Michael B.
Wakin [144].

55



(i.e., the DPSS vectors) by utilizing the fact that the difference betweenBN,W and FN,WF ∗N,W

approximately has a rank of O(logN) (see Theorem 3.1). Note that, this approximate

projection is not a true orthogonal projection onto any subspace. Here, we exhibit a subspace

that captures most of the energy in the first 2NW DPSS vectors (and also the energy in

sampled sinusoids within the band of interest), and this subspace has an orthogonal projector

that can be applied efficiently to an arbitrary vector.

By utilizing the result that BN,W − FN,WF ∗N,W is approximately low rank and also that

FN,W can be applied to a vector efficiently with the FFT, we build a subspace with an

orthonormal basis of the form

Q = [FN,W Q′] ,

where Q′ ∈ CN×R for some R that we can choose as desired. Let FN,W denote the N ×

(N − 2bNW c − 1) matrix with the highest frequency N − 2bNW c − 1 DFT vectors of

length N . Thus FN :=
[
FN,W FN,W

]
is the normalized DFT matrix. Since Q′ must be

orthogonal to FN,W and the columns of Q′ must be orthonormal, we can represent Q′ by

Q′ = FN,WV , where V ∈ C(N−2bNW c−1)×R is orthonormal (one can verify that F ∗N,WQ′ = 0

and (Q′)∗Q′ = I). Thus, the desired orthogonal approximate Slepian basis is given as

Q =
[
FN,W FN,WV

]
, V TV = I. (4.1)

The optimal V is chosen such that the subspace spanned by Q captures the important

DPSS vectors. (Since all the DPSS vectors s(0)
N,W , . . . , s

(N−1)
N,W form an orthobasis for CN , no

subspace of CN can capture all of them except CN itself.) To illustrate how we obtain V ,

consider the following weighted least squares problem

minimize
Q

%(Q) :=
N−1∑
`=0

λ
(`)
N,W

∥∥∥s(`)
N,W −QQ

∗s
(`)
N,W

∥∥∥2

. (4.2)
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Here we use the DPSS eigenvalue λ(`)
N,W to weight the energy in the DPSS vector s(`)

N,W

that is not captured by Q. The reason is that the larger the DPSS eigenvalue, the more

concentration the corresponding DPSS vector has in the frequency domain, implying that

the DPSS vector is more important in practical applications such as representing sampled

bandlimited signals (see (2.20)). To solve (4.2), we rewrite %(Q) as

%(Q) = trace

(
N−1∑
`=0

λ
(`)
N,Ws

(`)
N,W

(
s

(`)
N,W

)T

−QQ∗λ(`)
N,Ws

(`)
N,W

(
s

(`)
N,W

)T
)

= trace (BN,W −QQ∗BN,W )

=

∫ W

−W
‖ef −QQ∗ef‖2

2 df,

(4.3)

where the last line follows from (2.19). In other words, an orthonormal basis Q obtained by

minimizing %(Q) is also an optimal basis to represent sampled bandlimited vectors in the

MSE sense.

Plugging Q =
[
FN,W FN,WV

]
into the above equation yields

%(Q) = trace
(
F
∗
N,WBN,WFN,W − V V ∗F

∗
N,WBN,WFN,W

)
which suggests that setting V equal to the R dominant left singular vectors of F ∗N,WBN,W

(or F ∗N,WBN,WFN,W ) results in a relatively small representation residual in the right hand

of the above equation as long as F ∗N,WBN,W has an effective rank of R. The following result

provides a formal guarantee on this.

Theorem 4.1. (Representation guarantee for DPSS vectors) Fix N ∈ N and W ∈ (0, 1
2
).

Let V ∈ C(N−2bNW c−1)×R be the R dominant left singular vectors of F ∗N,WBN,W . For any

ε ∈ (0, 1
2
), fix K to be such that λ(K−1)

N,W ≥ ε. Then the orthobasis Q =
[
FN,W FN,WV

]
satisfies

‖SKS∗K −QQ∗SKS∗K‖2 ≤ ε,

‖s(`)
N,W −QQ

∗s
(`)
N,W‖

2
2 ≤ ε,
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for all l = 0, 1, . . . , K − 1 with R = dCN log (15/ε)e. Here CN is the constant specified in

Theorem 3.1. By slightly increasing R to R = dCN log (15N/ε)e, the subspace angle ΘSK ,Q

between the columns spaces of SK and Q satisfies

cos (ΘSK ,Q) ≥
√

1− ε.

The formal definition of (the largest principal) angle between two subspaces is given in

Definition 2.3. In formally, if the subspace angle Θ is small, the two subspaces are nearly

linearly dependent and one subspace is almost “contained” in the other subspace. Here, to

guarantee that the column space of SK is almost “contained” in the column space of Q,

one can make ΘSK ,Q arbitrary small by increasing R. However, we note that we are not

guaranteed that ‖QQ∗−SKS∗K‖ is small since in general ‖QQ∗−SKS∗K‖ = 1 if Q and SK

have a different number of columns. Instead, we are guaranteed that the subspace spanned

by the columns of SK is approximately within the column space of Q and the subspace

angle between the two subspaces is small by Theorem 4.1. We also note that the bound on

‖SKS∗K −QQ∗SKS∗K‖ is useful since for any vector a ∈ CN

‖a−QQ∗a‖
≤ ‖a−QQ∗SKS∗Ka‖
≤ ‖a− SKS∗Ka‖+ ‖SKS∗K −QQ∗SKS∗K‖‖a‖
≤ ‖a− SKS∗Ka‖+

√
ε‖a‖,

which implies any representation guarantee for SK can be utilized for Q.

4.2 Representations of Sampled Sinusoids and Oversampled Bandlimited Sig-
nals

As illustrated in (4.3), the orthonormal matrix obtained by minimizing %(Q) is also

expected to accurately represent the sampled sinusoids within the band of interest in the

MSE sense. This is formally established in the following results.
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Theorem 4.2. (Average representation error) Fix W ∈ (0, 1
2
) and N ∈ N. Let V ∈

C(N−2bNW c−1)×R contain the R dominant left singular vectors of F ∗N,WBN,W . Then for any

ε ∈ (0, 1
2
), the orthobasis Q =

[
FN,W FN,WV

]
satisfies∫ W

−W

‖ef −QQ∗ef‖2
2

‖ef‖2
2

df ≤ ε

with

R = max

{⌈
CN log

(
15CN
Nε

)⌉
+ 1, 0

}
.

Here CN is the constant specified in Theorem 3.1.

A similar approximation guarantee holds for sampled vectors arising from sampling ran-

dom bandlimited signals by using (2.21).

In [148] (see also Theorem 5.6 in Chapter 5), we rigorously show that every discrete-

time sinusoid with a frequency f ∈ [−W,W ] is well-approximated by the DPSS basis SK

with K slightly larger than 2NW . The proof is based on an asymptotic result on the

DTFT of the DPSS basis functions (which are known as discrete prolate spheroidal wave

functions (DPSWF’s)) and the result is thus asymptotic. Here we use a different approach

to obtain a non-asymptotic guarantee for approximating every discrete-time sinusoid with a

frequency f ∈ [−W,W ]. Noting that ‖ef −QQ∗ef‖2
2 is differentiable everywhere, we first

show that its derivative is bounded above by 2πN2. Then by utilizing the previous result on∫W
−W ‖ef −QQ

∗ef‖2
2 df , one obtains a similar bound on ‖ef −QQ∗ef‖2

2.

Theorem 4.3. (Representation guarantee for pure sinusoids) Let N ∈ N and W ∈ (0, 1
2
) be

given. Also let V ∈ C(N−2bNW c−1)×R be the R dominant left singular vectors of F ∗N,WBN,W .

Then for any ε ∈ (0, 1
2
), the orthobasis Q =

[
FN,W FN,WV

]
satisfies

‖ef −QQ∗ef‖2
2

‖ef‖2
2

≤ ε

for all f ∈ [−W,W ] with

R = max

(⌈
CN log

(
60πCN
ε2

)⌉
+ 1,

⌈
CN log

(
15CN
NWε

)⌉
+ 1

)
.
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Here CN is the constant specified in Theorem 3.1.

Remark 4.1. In [148] (see also Theorem 5.6 in Chapter 5), we show a similar but asymptotic

result for the Slepian basis as follows. Fix W ∈ (0, 1
2
) and δ ∈ (0, 1

2W
− 1). Let K =

2NW (1 + δ). Then there exist constants C̃1, C̃2 and N0 ∈ N (which may depend on W and

δ) such that

‖ef − SKS∗Kef‖
2
2

‖ef‖2
2

≤ C̃1N
3/2e−C̃2N

for all N ≥ N0 and f ∈ [−W,W ]. Compared with this result, Theorem 4.3 is non-asymptotic

and provides a detail on the constants involved. However, we note that similar guarantees

in Theorem 4.3 also holds for the DPSS basis by utilizing similar proof techniques for Theo-

rem 4.3.

Theorem 4.4. (Nonasymptotic representation guarantee for pure sinusoids with DPSS) Let

N ∈ N and W ∈ (0, 1
2
) be given. Also let SK be an N × K matrix consists of the first K

DPSS vector. Then for any ε ∈ (0, 1
2
), the orthobasis SK satisfies

‖ef − SKS∗Kef‖
2
2

‖ef‖2
2

≤ ε

for all f ∈ [−W,W ] with

K = 2NW + max

(⌈
CN log

(
60πCN
ε2

)⌉
+ 1,

⌈
CN log

(
15CN
NWε

)⌉
+ 1

)
.

Finally, we remark that for Q =
[
FN,W FN,WV

]
with V ∈ C(N−2bNW c−1)×R, both Q

and Q∗ can be applied to a vector with computational complexity O(N logN +NR). As an

example, for any a ∈ CN , ã =
[
FN,W FN,W

]∗
a can be efficiently computed by the FFT

with complexity O(N logN). Then V ∗ã2 can be computed via conventional matrix-vector

multiplication with complexity O(NR), where ã2 is the sub-vector obtained by taking the

last N − 2bNW c − 1 entries of ã2. Thus the total computational complexity for Q∗a is

O(N logN +NR).
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4.3 ROAST Construction with a Randomized Algorithm

We note that the DPSS vectors are not involved in constructing V and Q. Directly

computing V with Businger-Golub algorithm [14] requires O(N(N − 2bNW c − 1)R) flops.

Noting that F ∗N,WBN,W is effectively low rank, we can apply a fast randomized algorithm [60]

to compute an approximate basis for the range of F ∗N,WBN,W . Let Ω be an N ×P standard

Gaussian matrix. We construct a matrix V ′ whose columns form an orthonormal basis for

the range of F ∗N,WBN,WΩ. By applying the FFT, the complexity of computing F ∗N,WBN,WΩ

is O(PN logN). Computing an orthonormal basis for the range of F ∗N,WBN,WΩ requires

O(NP 2) flops. The following results establish the dimensionality of V ′ needed and the

representation guarantee with the corresponding basis.

Theorem 4.5. (Guarantee for randomized algorithm) Fix N ∈ N and W ∈ (0, 1
2
). Let

Ω be an N × P standard Gaussian matrix. Also let V be an orthonormal basis for the

column space of the sample matrix F ∗N,WBN,WΩ. For any ε ∈ (0, 1
2
), fix K to be such that

λ
(K−1)
N,W ≥ ε. Then the orthobasis Q =

[
FN,W FN,WV

]
has the following expression ability

in expectation.

• Setting

P =

⌈
2CN log

(
30 + 15e

ε

)⌉
+ 3,

we are guaranteed that

E
[
‖SKS∗K −QQ∗SKS∗K‖

2] ≤ ε,

E
[∥∥∥s(`)

N,W −QQ
∗s

(`)
N,W

∥∥∥2

2

]
≤ ε

for all l = 0, 1, . . . , K − 1. By slightly increasing P to

P =

⌈
2CN log

(
(30 + 15e)N

ε

)⌉
+ 3,

we have
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E [cos (ΘSK ,Q)] ≥
√

1−Nε.

• The sampled sinusoids within the band of interest in the least-squares sense can be

captured well by Q in expectation:

E

[∫ W

−W

‖ef −QQ∗ef‖2
2

‖ef‖2
2

df

]
≤ ε

with

P =

⌈
4

3
CN log

(
15
√

2CN
ε

)
+

7

3

⌉
.

• The orthonormal basis Q can also capture most of the energy in each pure sinusoid:

E

[
‖ef −QQ∗ef‖2

2

‖ef‖2
2

]
≤ ε

for all f ∈ [−W,W ] with

P = max

(⌈
4

3
CN log

(
60πN

√
2CN

ε2

)
+

7

3

⌉
,

⌈
4

3
CN log

(
15π
√

2CN
Wε

)
+

7

3

⌉)
.

Here E denotes expectation with respect to the random matrix Ω.

Remark 4.2. Using concentration of measure effects [60], we can argue that the results hold

for a particular sampling matrix Ω with high probability.

4.4 Benefits of an Orthonormal Basis

For any ε ∈ (0, 1
2
), fix K to be such that λ(K−1)

N,W ≥ ε. In the last chapter, we demonstrated

a fast factorization of SKS∗K by constructing two N × K ′ matrices T1 and T2 with K ′ ≤

d2NW e+
(

12
π2 log(8N) + 18

)
log
(

15
ε

)
such that

‖SKS∗K − T1T
∗
2 ‖ ≤ 2ε.

Both T ∗2 x and T1T
∗
2 x (as an approximation for SKS∗Kx) can be efficiently computed with

O(N logN log 1
ε
) operations.
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However, neither T1 nor T2 is orthonormal and in general ‖T ∗2 x‖ 6= ‖T1T
∗
2 x‖ and

‖T ∗2 x‖ 6= ‖T2T
∗
2 x‖. Moreover, neither T1 nor T2 is well conditioned (i.e., both have a

large condition number). In some applications, an approximate but orthonormal transform

Q may be preferred, in order to ensure that ‖PQx‖ = ‖Q∗x‖ or that Q is well conditioned.

We list two such stylized applications below.

Signal recovery

Suppose x ∈ CN is a sampled bandlimited signal with digital frequencies within the band

[−W,W ] and we observe it through

y = Φx,

where Φ ∈ CM×N (2NW ≤ M ≤ N) is the sensing matrix. Knowing that x approximately

lives in the subspace spanned by SK , we recover x by solving

minimize
α

‖y −ΦSKα‖2
F ,

which is also a key part in compressive sensing of a discrete signal one obtains when collecting

a finite set of uniform samples from a multiband analog signal [32]. The above least-squares

problem is equivalent to the following system of linear equations

S∗KΦ∗ΦSKα = S∗KΦ∗y (4.4)

which can be solved by numerical algorithms such as conjugate gradient descent (CGD) [107].

The computational complexity of the CGD method depends on two factors: the convergence

speed which depends on the condition number of the systemA := S∗KΦ∗ΦSK and determines

the number of iterations required, and the computational burden in each iteration mainly

involving the application of A to a length-M vector. Utilizing a structured sensing matrix

Φ that has a fast implementation (such as the fast Johnson-Lindenstrauss transform [3]), we

can efficiently implement A if we replace SK by the fast transform T1 or T2 or the ROAST

Q of the form (4.1). Unfortunately, both T1 and T2 have large condition number, resulting

in slow convergence of the CGD method since the corresponding system A in general also
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has large condition number. Thus, in this case, the orthonormal basis Q is preferable.

Line spectral estimation

Consider a measurement vector y consisting of a superposition of r sampled exponentials:

y =
r∑
i=1

α?ief?i .

We may attempt to recover the frequencies {f ?1 , . . . , f ?r } by solving the following nonlinear

least squares problem

{f̂i, α̂i} := arg min
fi,αi

∥∥∥∥∥y −
r∑
i=1

αiefi

∥∥∥∥∥
2

. (4.5)

Suppose we are given a priori knowledge that the frequencies f ∗i ∈ [−W,W ] for all i ∈

{1, . . . , r}. Then we can reduce the computational cost of solving by (4.5) by projecting the

measurements y onto the range space of Q [66]:

{f i, αi} := arg min
fi,αi

∥∥∥∥∥PQ
(
y −

r∑
i=1

αiefi

)∥∥∥∥∥
2

= arg min
fi,αi

∥∥∥∥∥Q∗
(
y −

r∑
i=1

αiefi

)∥∥∥∥∥
2

. (4.6)

It is shown in [66] that the projected problem (4.6) has the same stationary points as the

full problem (4.5) under certain conditions on the range space of Q. When applying an

optimization method like Gauss-Newton, the advantage of the projected problem (4.6) over

the full problem (4.5) is that each optimization step is much cheaper since the projected

Jacobian has much smaller size.

Based on this observation, for the general case where the frequencies lie in multiple bands,

[66] provides an iterative algorithm that in each iteration, first finds one underlying band

and projects the signal onto this band, then applies Gauss-Newton to solve the projected

problem. We also note that our Q can be further reduce the computational cost in [66] since

Q can be efficiently applied to a vector, while the orthonormal basis utilized in [66] is a

numerical approximation (obtained by performing PCA on a set of sinusoids) to the Slepian

basis SK .
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4.5 Simulations

In this section, we present some experiments to illustrate the effectiveness of our pro-

posed ROAST and ROAST-R (which is short for Rapid Orthogonal Approximate Slepian

Transform with a Randomized algorithm for computing V—see Section 4.3). Through this

section, we use R (which is typically equal to O(log(N))) to denote the the dimensionality

of V for ROAST. For ROAST-R, we set P , the dimensionality of V , as P = R here.

For comparison, we also compute the projection onto the column space of FN,W+ R
2N

which

is the N × (2bNW c + 1 + R) DFT matrix with frequencies in [−W − R
2N
,W + R

2N
]. Such

a projection is simply denoted by Sub-DFT. Note that the dimension of the column space

of FN,W+ R
2N

is 2bNW c + 1 + R and is equal to the dimension of the column space of Q.

In addition, the projection onto the column space of the leading DPSS vectors SK is also

computed and denoted by simply by DPSS in the legends of the figures. We also choose

K = 2bNW c+ 1 +R so that all these subspaces have the same dimensionality.

We quantify the ability of the different projections to capture a given signal x ∈ CN in

terms of

SNR = 20 log10

(
‖x‖2

‖x− x̂‖2

)
dB,

where x̂ is the resulting projection of x by the above mentioned methods.

Figure 4.1(a) shows the SNR captured by different projections for various pure sinusoids

ef . We observe that the DPSS basis, ROAST, ROAST-R and provide almost equal approx-

imation performance for the pure sinusoids with frequencies in the band of interest. Also as

guaranteed by Theorems 4.3, 4.4, and 4.5, any sinusoid in the band of interest can be well

represented by the DPSS basis, ROAST and ROAST-R.

Also, we generate a sampled bandlimited signal x by adding 5000 complex exponen-

tials with frequencies selected uniformly at random within the frequency band [−W,W ].

Figure 4.1(b) shows the ability of the different projections to capture sampled bandlimited

signals in terms of SNR. It can also be observed that the DPSS basis, ROAST and ROAST-R

65



−0.5 −0.25 0 0.25 0.5

0

50

100

150

200

250

f

S
N
R

(d
B
)

 

 

Sub-DFT
DPSS
ROAST
ROAST-R

(a)

128 256 512 1024 2048 4096
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

N

ti
m
e(
se
co
n
d
)

 

 

Sub−DFT

DPSS

ROAST−R

ROAST

(b)

Figure 4.1: SNR captured by different projections (a) for pure sinusoids ef with R = 4 log(N)
and (b) for a sampled bandlimited signal x with R ranging from 0 to 30 ≈ 5 log(N). Here
N = 1024, W = 1

4
.

provide almost equal approximation performance for sampled bandlimited signals.
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Figure 4.2: Comparison of different projections for a sampled bandlimited signal x: (a) SNR
as a function of N ; (b) computation time as a function of N in a a logarithmic scale for both
X-axis and Y -axis. In all plots, W = 1

4
and R = b4 log(N)c.

In addition, Figure 4.2 plots SNR as a function of dimension N and the relationship

between the run time and N for the four projection methods. In this experiment, we fix

R = b4 log(N)c. As observed, the running time of DPSS has a quadratic increase, while
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ROAST and ROAST-R8 are nearly as fast as the DFT, but with much better approximation

performance.
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Figure 4.3: Precomputation time for DPSS and ROAST-R as a function of N in a logarithmic
scale for both X-axis and Y -axis. In all plots, W = 1

4
and R = b4 log(N)c.

Finally, we compare the precomputation time needed for DPSS basis and ROAST-R in

Figure 4.3. For the DPSS basis, the first K DPSS vectors are precomputed with the Matlab

command “dpss” (which actually computes the eigenvectors of a tridiagonal matrix with

computational complexity of O(N2)). For ROAST-R, the construction involves computing

F
∗
N,WBN,WΩ with Ω ∈ RN×R (which requires O(RN logN) operations) and computing an

orthonormal basis for the range of F ∗N,WBN,WΩ (which requires O(NR2) operations). As

can be seen in Figure 4.3, the precomputation time required by the DPSS grows roughly

quadratically with N , while the precomputation time required by ROAST-R grows just

faster than linearly in N .

8ROAST and ROAST-R are expected to have the same running time since these two transforms have the
same dimensionality and form.
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CHAPTER 5

APPROXIMATING SAMPLED SINUSOIDS AND MULTIBAND SIGNALS USING

MULTIBAND MODULATED DPSS DICTIONARIES

In the last two chapters, we considered the parameterized subspace model where the sig-

nals of interested are obtained when collecting a finite set of uniform samples from baseband

analog signals. In this chapter9, we study possible dictionaries for representing the discrete

vector one obtains when collecting a finite set of uniform samples from a multiband analog

signal. To that end, we repeat (2.6) that

W = [f0 −W0, f0 +W0] ∪ [f1 −W1, f1 +W1] ∪ · · · ∪ [fJ−1 −WJ−1, fJ−1 +WJ−1] ⊆
[
−1

2
,
1

2

]
is a union of J intervals. For each i ∈ [J ], define Ψi = [EfiSN,Wi

]ki for some value ki ∈

{1, 2, . . . , N} that we can choose as desired. We construct the multiband modulated DPSS

dictionary Ψ by concatenating these subdictionaries:

Ψ := [Ψ0 Ψ1 · · · ΨJ−1]. (5.1)

We investigate the spectrum of the time- and multiband- limiting operator INBWI∗N (see

Section 2.5 for the formal definition), as well as the efficiency of using Ψ to represent discrete-

time sinusoids and sampled multiband signals. We also provide a stylized application in

through-the-wall radar imaging at the end of this chapter.

5.1 Eigenvalues for Time- and Multiband-Limiting Operator

We begin by studying the eigenvalue concentration behavior of the operator INBWI∗N

(and hence BN,W), which reveals the effective dimensionality of the finite union of curves

MW = {ef}f∈W, where ef is a length-N sinusoid defined in (2.1).

9This work is in collaboration with Michael B. Wakin [145, 148, 146, 147].
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We first establish the following rough bound, which states that all the eigenvalues of

INBWI∗N are between 0 and 1. Its proof is given in Appendix C.1.

Lemma 5.1. For any W ⊂ [−1
2
, 1

2
] and N , the operator INBWI∗N is positive-definite with

eigenvalues

1 > λ
(0)
N,W ≥ λ

(1)
N,W ≥ · · · ≥ λ

(N−1)
N,W > 0

and
N−1∑
l=0

λ
(`)
N,W = N |W|.

We denote the corresponding eigenvectors of INBWI∗N by u(0)
N,W,u

(1)
N,W, . . . ,u

(N−1)
N,W .

There is, in fact, a sharp transition in the distribution of the eigenvalues of INBWI∗N . We

establish this fact in the following theorem, which is proven in Appendix C.2.

Theorem 5.1. Suppose W is a finite union of J pairwise disjoint intervals as defined in

(2.6). For any ε ∈ (0, 1
2
), the number of eigenvalues of INBWI∗N that are between ε and 1− ε

satisfies

#{` : ε ≤ λ
(`)
N,W ≤ 1− ε} ≤ J

2
π2 log(N − 1) + 2

π2
2N−1
N−1

ε(1− ε)
. (5.2)

This result states that the number of eigenvalues in [ε, 1−ε] is in the order of log(N) for any

fixed ε ∈ (0, 1
2
). Along with the following result which states that the number of eigenvalues

of INBWI∗N greater than 1
2
equals ≈ N |W|, we conclude that the effective dimensionality of

MW is approximately N |W| =
∑

i 2NWi. Its proof is given in Appendix C.3.

Theorem 5.2. Let W ⊂ [−1
2
, 1

2
] be a finite union of J disjoint intervals having the form in

(2.6). Denote by

ι− = #{n ∈ Z : −bN
2
c ≤ n ≤ bN − 1

2
c, (

n

N
− 1

2N
,
n

N
+

1

2N
) ⊂W}
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and

ι+ = #{n ∈ Z : −bN
2
c ≤ n ≤ bN − 1

2
c, (

n

N
− 1

2N
,
n

N
+

1

2N
) ∩W 6= ∅}.

In particular, it holds that bN |W|c − 2J + 2 ≤ ι− ≤ ι+ ≤ dN |W|e + 2J − 2. Then the

eigenvalues of the operator INBWI∗N satisfy

λ
(ι−−1)
N,W ≥ 1

2
≥ λ

(ι+)
N,W.

Note that results similar to the above two theorems for time-frequency localization in the

continuous domain have been established in [63, 70, 80]. Similar to the ideas used in [63],

the key to proving Theorem 5.1 is to obtain an upper bound on the distance between the

trace of INBWI∗N and the sum of the squared eigenvalues of INBWI∗N . Constructing an

appropriate subspace with a carefully selected bandlimited sequence for the Weyl-Courant

minimax characterization of eigenvalues is the key to proving Theorem 5.2. The proof

techniques of [70, 80] form the basis of our analysis in Appendix C.3, but some modifications

are required to extend their results to the discrete domain.

Similar to what happens in the single band case (when J = 1; see Lemma 2.1), the

eigenvalues of INBWI∗N have a distinctive behavior: the first N |W| =
∑

i 2NWi eigenvalues

tend to cluster very close to 1, while the remaining eigenvalues tend to cluster very close to

0, after a narrow transition. This is captured formally in the following result10, whose proof

is given in Appendix C.4.

Theorem 5.3. Let W ⊂ [−1
2
, 1

2
] be a fixed finite union of J disjoint intervals having the

form in (2.6).

10Most of the results in this chapter build upon the asymptotic expressions for the DPSWF’s [118] and hence
are also asymptotic. It is possible to obtain nonasymptotic version of these results by utilizing the results
in Chapters 3 and 4, especially Corollary 3.1 and Theorem 4.4.

70



1. Fix ε ∈ (0, 1). Then there exist constants C1(W, ε), C2(W, ε) (which may depend on W

and ε) and an integer N0(W, ε) (which may also depend on W and ε) such that

λ
(`)
N,W ≥ 1− C1(W, ε)N2e−C2(W,ε)N , ∀ l ≤ J − 1 +

∑
i

b2NWi(1− ε)c

for all N ≥ N0(W, ε).

2. Fix ε ∈ (0, 1
|W| − 1). Then there exist constants C3(W, ε), C4(W, ε) (which may depend

on W and ε) and an integer N1(W, ε) (which may also depend on W and ε) such that

λ
(`)
N,W ≤ C3(W, ε)e−C4(W,ε)N , ∀ l ≥

∑
i

d2NWi(1 + ε)e

for all N ≥ N1(W, ε).

We point out that N0(W, ε) ≥ max {N0(Wi, ε), ∀ i ∈ [J ]}, C2(W, ε) = min {C2(Wi,ε), ∀ i∈[J ]}
2

,

C3(W, ε) = J max {C3(Wi, ε), ∀ i ∈ [J ]} and C4(W, ε) = min {C4(Wi, ε), ∀ i ∈ [J ]}, which

will prove useful in our analysis below. Here C2(Wi, ε), C3(Wi, ε), and C4(Wi, ε) are as

specified in Lemma 2.1.

5.2 Multiband Modulated DPSS Dictionaries for Sampled Multiband Signals

Let p ∈ {1, 2, . . . , N}. Define

Φ := [u
(0)
N,W u

(1)
N,W · · · u

(p−1)
N,W ], (5.3)

where u(`)
N,W, ∀ l ∈ [N ] are the eigenvectors of INBWI∗N . Let Ψ be the multiband modulated

DPSS dictionary defined in (5.1).

There are three main reasons why the dictionary Ψ may be useful representing sampled

multiband signals. First, direct computation of Φ is difficult due to the clustering of the

eigenvalues of BN,W. However, in the single band case, the matrix BN,W is known to com-

mute with a symmetric tridiagonal matrix that has well-separated eigenvalues, and hence

its eigenvectors can be efficiently and stably computed [118]. Grünbaum [58] gave a certain
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condition for a Toeplitz matrix to commute with a tridiagonal matrix with a simple spec-

trum. We can check that the matrix BN,W in general does not satisfy this condition, except

for the case when W consists of only a single interval. However, we emphasize that Ψ is

constructed simply by modulating DPSS’s, which, again, can be computed efficiently.

Second, the multiband modulated DPSS dictionary Ψ provides an efficient representation

for sampled multiband signals. Davenport and Wakin [32] provided theoretical guarantees

into the use of this dictionary for sparsely representing sampled multiband signals and recov-

ering sampled multiband signals from compressive measurements. We extend one of these

guarantees in Section 5.2.3. Moreover, we confirm that a multiband modulated DPSS dictio-

nary provides a high degree of approximation for all discrete-time sinusoids with frequencies

in W in Section 5.2.2.

Third, as indicated by the results in Section 5.1, ≈ N |W| dictionary atoms are necessary

in order to achieve a high degree of approximation for the discrete-time sinusoids in a MSE

sense. Our results, along with [32], show that the multiband modulated DPSS dictionary

Ψ with ≈ N |W| atoms can indeed approximate discrete-time sinusoids with high accuracy.

In order to help explain this result, we first show that there is a near nesting relationship

between the subspaces spanned by the columns of Ψ and by the columns of the optimal

dictionary Φ.

5.2.1 The Subspace Angle

Our first guarantee considers the case where in constructing Ψ, each ki is chosen slightly

smaller than 2NWi, and in constructing Φ, we take p to be slightly larger than
∑

i 2NWi.

In this case, we can guarantee that the subspace angle between SΨ and SΦ is small. The

proof of the following result in given in Appendix C.5.

Theorem 5.4. Let W ⊂ [−1
2
, 1

2
] be a fixed finite union of J disjoint intervals having the

form in (2.6). Fix ε ∈ (0,min {1, 1
|W| − 1}). Let p =

∑
id2NWi(1 + ε)e and Φ be the N × p

matrix defined in (5.3). Also let ki ≤ b2NWi(1 − ε)c,∀i ∈ [J ] and Ψ be the matrix defined
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in (5.1). Then for any column ψ in Ψ,

||ψ − PΦψ||22 ≤
2C̃1(W, ε)e−C̃2(W,ε)N(

1− C̃1(W, ε)e−C̃2(W,ε)N − C3(W, ε)e−C4(W,ε)N
)2 =: κ1(N,W, ε)

and

cos(ΘSΨSΦ) ≥

√√√√√1− κ1(N,W, ε)−N
√
κ1(N,W, ε)− 3N

√
C̃1(W, ε)e−

C̃2(W,ε)
2

N

1 + 3N

√
C̃1(W, ε)e−

C̃2(W,ε)
2

N

(5.4)

if N ≥ max{N0(W, ε), N1(W, ε)}. Here C̃1(W, ε) = max {C1(Wi, ε), ∀ i ∈ [J ]}, C̃2(W, ε) =

min {C2(Wi, ε), ∀ i ∈ [J ]}, N0(W, ε), N1(W, ε), C3(W, ε), and C4(W, ε) are the constants

specified in Theorem 5.3, and C1(Wi, ε) and C2(Wi, ε) are the constants specified in Lemma 2.1.

We can also guarantee that the subspace angle between SΨ and SΦ is small if, in con-

structing Ψ, each ki is chosen slightly larger than 2NWi, and in constructing Φ, we take

p to be slightly smaller than
∑

i 2NWi. This result is established in Corollary 5.1 (whose

proof is given in Appendix C.7), which follows from Theorem 5.5 (whose proof is given in

Appendix C.6).

Theorem 5.5. Let W ⊂ [−1
2
, 1

2
] be a finite union of J disjoint intervals having the form in

(2.6). Given some values ki ∈ {1, 2, . . . , N},∀i ∈ [J ], let Ψ be the matrix defined in (5.1).

Then

||PΨu
(`)
N,W||2 ≥ λ

(`)
N,W −

J−1∑
i=0

N−1∑
li=ki

λ
(li)
N,Wi

for all l ∈ {0, 1, . . . , N − 1}.

Corollary 5.1. Let W ⊂ [−1
2
, 1

2
] be a fixed finite union of J disjoint intervals having the

form in (2.6). Fix ε ∈ (0,min{1, 1
|W| − 1}). Let p ≤ J − 1 +

∑
ib2NWi(1− ε)c and Φ be the

N × p matrix defined in (5.3). Also let ki = d2NWi(1 + ε)e,∀i ∈ [J ] and Ψ be the matrix
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defined in (5.1). Then for any column u(`)
N,W in Φ,

||PΨu
(`)
N,W||2 ≥ 1− C1(W, ε)N2e−C2(W,ε)N −NC3(W, ε)e−C4(W,ε)N

and

cos(ΘSΨSΦ) ≥
√

1− 2κ2(N,W, ε) + κ2
2(N,W, ε)−N

√
2κ2(N,W, ε)− κ2

2(N,W, ε) (5.5)

for all N ≥ max{N0(W, ε), N1(W, ε)}, where N i(W, ε) and Ci(W, ε) are constants speci-

fied in Theorem 5.3, and κ2(N,W, ε) is defined as κ2(N,W, ε) := C1(W, ε)N2e−C2(W,ε)N +

NC3(W, ε)e−C4(W,ε)N .

Although our results hold for scenarios where one dictionary contains
∑

ib2NWi(1− ε)c

atoms while another one has
∑

id2NWi(1 + ε)e atoms, we note that these dimensions can

be made very close by choosing ε sufficiently small.11

5.2.2 Approximation Quality for Discrete-time Sinusoids

The above results show that Ψ spans nearly the same space as Φ in the case where both

dictionaries contain ≈ N |W| columns. In this section, we investigate the approximation

quality of Ψ for discrete-time sinusoids with frequencies in the bands of interest. Then,

in the next section, we investigate the approximation quality of Ψ for sampled multiband

signals.

We first prove that a single band dictionary with slightly more than 2NW baseband

DPSS vectors can capture almost all of the energy in any sinusoid with a frequency in

[−W,W ]. Our analysis is based upon an expression for the DTFT of the DPSS vectors

proposed in [118]. We review this result in Appendix C.8.

11Though a small ε may require N large enough such that our results hold,
∑
ib2NWi(1−ε)c∑
id2NWi(1+ε)e (the ratio between

the sizes of the two dictionaries) may become close to 1.
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Theorem 5.6. Fix W ∈ (0, 1
2
) and ε ∈ (0, 1

2W
− 1). Let W ′ = 1

2
− W , ε′ = W

1
2
−W ε and

k = 2NW (1 + ε). Then there exists a constant C9(W ′, ε′) (which may depend on W ′ and ε′)

such that

||ef − P[SN,W ]kef ||
2
2 ≤ C9(W ′, ε′)N5/2e−C2(W ′,ε′)N , ∀|f | ≤ W

for all N ≥ N0(W ′, ε′), where N0(W ′, ε′) and C2(W ′, ε′) are constants defined in Lemma 2.1.

The proof is given in Appendix C.9. Similar to Theorem 4.4, Theorem 5.6 rigorously

shows that asymptotically every discrete-time sinusoid with a frequency f ∈ [−W,W ] is

well-approximated by a DPSS basis [SN,W ]k with k slightly larger than 2NW . This result

extends the approximation guarantee in a MSE sense presented in [32]. We now extend this

result for the multiband modulated DPSS dictionary. The proof of the following result is

given in Appendix C.10

Corollary 5.2. Let W ⊂ [−1
2
, 1

2
] be a fixed finite union of J disjoint intervals having the

form in (2.6). Fix ε ∈ (0, 1
|W| − 1). Let ki = 2NWi(1 + ε),∀i ∈ [J ] and Ψ be the matrix

defined in (5.1). Then there exist constants C10(W, ε) and C11(W, ε) (which may depend on

W and ε) and an integer N2(W, ε) (which may also depend on W and ε) such that

||ef − PΨef ||22 ≤ C10(W, ε)N5/2e−C11(W,ε)N , ∀f ∈W (5.6)

for all N ≥ N2(W, ε).

5.2.3 Approximation Quality for Sampled Multiband Signals (Statistical Anal-
ysis)

As indicated in [32], in a probabilistic sense, most finite-length sample vectors arising

from multiband analog signals can be well-approximated by the multiband modulated DPSS

dictionary. In this final section, we generalize the result [32, Theorem 4.4] to sampled

multiband signals where each band has a possibly different width.
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Theorem 5.7. Suppose for each i ∈ [J ], xi(t) is a continuous-time, zero-mean, wide sense

stationary random process with power spectrum

Pxi(F ) =

{
1∑J−1

i=0 Bbandi
, Fi −

Bbandi
2
≤ F ≤ Fi +

Bbandi
2

0, otherwise,
, (5.7)

and furthermore suppose x0(t), x1(t), . . . , xJ−1(t) are independent and jointly wide sense sta-

tionary. Let Ts denote a sampling interval chosen to satisfy the minimum Nyquist sam-

pling rate, which means Ts ≤ 1
Bnyq

:= 1/
(

2 max
{∣∣∣Fi ± Bbandi

2

∣∣∣ , ∀ i ∈ [J ]
})

. Let xi =

[xi(0) xi(Ts) . . . xi((N − 1)Ts)]
T ∈ CN denote a finite vector of samples acquired from xi(t)

and let x =
∑J

i=1 xi. Set fi = FiTs and Wi =
BbandiTs

2
. Let Ψ be the matrix defined in (5.1)

for some given ki. Then

E[‖x− PΨx‖2
2] ≤ 1

|W|

J−1∑
i=0

N−1∑
li=ki

λ
(`i)
N,Wi

, (5.8)

where E[‖x‖2
2] = N .

The proof is given in Appendix C.11. The right hand side of (5.8) can be made small

by choosing ki ≈ 2NWi for each i ∈ [J ]; recall Lemma 2.1. Aside from allowing for different

band widths, the above result improves the upper bound of [32, Theorem 4.4] by a factor of

J .

Finally, the following result establishes a deterministic guarantee for the approximation

of sampled multiband signals using a multiband modulated DPSS dictionary with ≈ N |W|

atoms.

Corollary 5.3. Suppose x is a continuous-time signal with Fourier transform X(F ) sup-

ported on F =
J−1
∪
i=0

[Fi −Bbandi/2, Fi +Bbandi/2], i.e.,

x(t) =

∫
F
X(F )ej2πFtdF.

Let x = [x(0) x(Ts) . . . x((N − 1)Ts)]
T ∈ CN denote a finite vector of samples acquired

from x(t) with a sampling interval of Ts ≤ 1/(2 max{|Fc ± Bband
2
|}). Let Wi = TsBbandi/2,
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fi = TsFi for all i ∈ [J ], and W =
J−1
∪
i=0

[fi − Wi, fi + Wi]. Fix ε ∈ (0, 1
|W| − 1). Let

ki = 2NWi(1 + ε), ∀i ∈ [J ] and let Ψ be the matrix defined in (5.1). Then

||x− PΨx||22 ≤
(∫

W
|x̃(f)|2 df

)
· C10(W, ε)N5/2e−C11(W,ε)N (5.9)

for all N ≥ N2(W, ε), where N2(W, ε), C10(W, ε) and C11(W, ε) are constants specified in

Corollary 5.2.

The proof is given in Appendix C.12. Corollary 5.3 can be applied in various settings:

• The sequence x[n] encountered in most practical problems has finite energy. For

example, if we assume that
∫
W |x̃(f)|2df ≤ 1, we conclude that ||x − PΨx||22 ≤

C10(W, ε)N5/2e−C11(W,ε)N .

• Moreover, in some practical problems, the finite-energy sequence x[n] may be approx-

imately time-limited to the index range n = 0, 1, . . . , N − 1 such that for some δ,

||x||22 = ||IN(x)||22 ≥ (1− δ)||x||22. In this case, (5.9) guarantees that

||x− PΨx||22
||x||22

≤
∫
W |x̃(f)|2df
||x||22

· C10(W, ε)N5/2e−C11(W,ε)N

≤ 1

1− δ
C10(W, ε)N5/2e−C11(W,ε)N ,

(5.10)

where the last inequality follows from Parseval’s theorem that ||x||22 =
∫
W |x̃(f)|2df .

Along with the result proved in [32] that samples from a time-limited sequence which

is approximately bandlimited to the bands of interest can be well-approximated by the

multiband modulated DPSS dictionary, we conclude that the multiband modulated DPSS

dictionary is useful for most practical problems involving representing sampled multiband

signals.

However, we point out that not all sampled multiband signals can be well-approximated

by the multiband modulated DPSS dictionary. To illustrate this, consider the simple case

where W reduces to a single band [−W,W ]. Recalling that the infinite-length DPSS’s are
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strictly bandlimited, it follows that each of the DPSS vectors can be obtained by sampling

and time-limiting some strictly bandlimited analog signal. Nevertheless, for all l ≥ k, we

will have

||s(`)
N,W − P[SN,W ]ks

(`)
N,W ||2

||s(`)
N,W ||2

= 1 (5.11)

even when we choose k = 2NW (1 + ε). In this case, the approximation guarantee in (5.11)

is much worse than what appears in (5.10). Such examples are pathological, however: the

infinite sequence s(`)
N,W has energy ||s(`)

N,W ||22 = (λ
(`)
N,W )−1, which according to Lemma 2.1 is

exponentially large when l ≥ 2NW (1+ε), and yet the energy of the sampled vector ||s(`)
N,W ||22

is only 1. Moreover, the spectrum of the infinite sequence s(`)
N,W is entirely concentrated in the

band [−W,W ] while the spectrum of the time-limited sequence TN(s
(`)
N,W ) is almost entirely

contained outside the band [−W,W ], and so on. We refer the reader to [32] for additional

discussion of this topic.

5.3 Stylized Application: Through-the-Wall Radar Imaging

As an particular application, in this section, we investigate the wall and target return

subspaces both (i) for each antenna element separately and (ii) jointly for all antenna ele-

ments in through-the-wall radar imaging. We mainly utilize Theorem 5.6 that all sampled

sinusoids in the targeted band can be represented well by the dictionary Q. To simply the

notations (especially the constants) involved in Theorem 5.6, we restate it as follows.

Theorem 5.8. Fix W ∈ (0, 1
2
) and fc ∈ R. Define Q := [EfcSN,W ]J . For fixed ε ∈ (0, 1),

choose J = 2NW (1 + ε). Then there exist constants C1, C2 (where C1, C2 may depend on W

and ε) such that for all N ≥ N0

||PQef ||2 ≤ C1N
5/4e−C2N , ∀ f ∈ [fc −W, fc +W ].

In a nutshell, this result states that (i) the effective dimensionality of the subspace

spanned by {ef}f∈[fc−W,fc+W ] is 2NW , and (ii) the modulated DPSS vectors provide a
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basis for this subspace.

5.3.1 Problem Setup

We consider an M -element synthetic linear aperture that transmits waveforms and re-

ceives the reflected signals. We assume that each transceiver transmits and receives a stepped-

frequency signal consisting of N frequencies equispaced over the band [f0, fN−1] with the

frequency step size ∆F := fN−1−f0

N−1
, i.e., fn = f0 + n∆F . Further, we assume monostatic

operation in which the transmitter and receiver are collocated as viewed from the target

(i.e., the same antenna is used to transmit and receive) and after the antenna obtains the

measurements in one location, we move it to the next location. To simply the notation, we

suppose the antennas are parallel to the wall. According to [2], we can model the wall return

at the m-th antenna and the n-th frequency as

rwm[n] :=
L∑
l=0

ϑle
−j2πfntl , ∀ m ∈ [M ], n ∈ [N ]. (5.12)

Here, [N ] denotes the set {0, 1, . . . , N −1} for any natural number N ∈ N; ϑ0 is the complex

reflectivity of the wall; ϑl, l ≥ 1 represents the complex reflectivity corresponding to the l-th

wall reverberation and decreases with l; L denotes the number of wall reverberations; t0 is

the direct two-way travel time between the wall and the antenna; and tl, l ≥ 1 is the delay

associated with the l-th wall return to the antenna.

Suppose there are K targets behind the wall. The target return observed by the m-th

antenna at the n-th frequency can be expressed as

rtm[n] :=
K∑
k=1

rtk,m[n], (5.13)

where rtk,m[n] :=
∫ τmax

k,m

τmin
k,m

σk(τ)e−j2πfnτdτ . Here, σk(τ) is the complex reflectivity function of

the k-th target (we assume the target reflectivity is independent of frequency), and τmin
k,m

and τmax
k,m are the minimum and maximum two-way travel times between the k-th target
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and the m-th antenna, respectively. Note that the return from point targets degenerates to

rtm[n] =
∑K

k=1 σke
−j2πfnτk,m , where τk,m is the two-way travel time between the k-th point

target and the m-th antenna [2].

The measurement ym := rwm + rtm received by m-th antenna consists both wall and

target return. Define rw = [(rw0 )H · · · (rwM−1)H ]H and rt = [(rt0)H · · · (rtM−1)H ]H . Here

H represents the conjugate transpose. The measurements {ym}m∈[M ] are arranged into an

MN × 1 vector y = rw + rt. From the measurements y, our goal is to detect or localize the

potential targets.

5.3.2 Wall Return Subspace

The dimensionality of the wall return subspace

If we consider only the direct wall return, the wall return defined in (5.12) reduces to

rwm[n] = ϑ0e
−j2πfnt0 = ϑ0e

−j2πf0t0e−j2πn∆Ft0 .

In this simple case, the wall return rwm lives in a 1-dimensional subspace spanned by the

basis vector e−∆Ft0 .

More generally, the wall return in (5.12) can be rewritten as

rwm[n] =
L∑
l=0

ϑle
−j2πf0tle−j2πntl∆F . (5.14)

From Theorem 5.8, we expect that the wall return rwm at one antenna will approximately

live within a low-dimensional subspace because (5.14) indicates that rwm can be viewed as

a linear combination of sampled exponentials ef with f ∈ [−tL∆F,−t0∆F ]. Accordingly,

define the dictionary of modulated DPSS vectors

Dm := [E−∆F (tL+t0)/2SN,∆F (tL−t0)/2]Jw

for some value of Jw ∈ {1, 2, . . . , N}.
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Corollary 5.4. Fix ε ∈ (0, 1). Choose Jw = N(tL−t0)∆F (1+ε). Then there exist constants

C1, C2 and an integer N0 such that for all N ≥ N0

‖PDmr
w
m‖2 ≤

L∑
l=0

ϑlC1N
5/4e−C2N .

The proof follows directly from Theorem 5.8. The above result indicates that rwm is

approximately within SDm , the column space of Dm when we set Jw = N(tL− t0)∆F (1 + ε).

Define the MN ×MJw block diagonal matrix D := diag(D0, . . . ,DM−1).

Corollary 5.5. Fix ε ∈ (0, 1). Choose Jw = N(tL−t0)∆F (1+ε). Then there exist constants

C1, C2 and an integer N0 such that for all N ≥ N0

‖PDrw‖2 ≤M
L∑
l=0

ϑlC1N
5/4e−C2N .

In words, the complete wall return rw lives approximately within SD, the subspace

spanned by the columns of D. The dimension of SD is MJw.

Before moving on, we note that the electrical properties of the wall material, which

directly determine {tl}Ll=1, may not be known in advance. The dictionaryDm cannot capture

the wall return completely if tL is chosen too small. On the other hand, choosing tL too large

may result in a dictionaryDm that also captures some energy from target returns behind the

wall. Since simulations have indicated that almost all walls have dominant reverberations

up to 1.5m behind the wall [2], we use the same strategy as [2] in that we mitigate the wall

reverberations up to 1.5m behind the wall. Note that we can still detect some targets located

less than 1.5m behind the wall as long as there exist some antennas that have distance larger

than 1.5m from these targets.

Because we assume the antennas are parallel to the wall, the wall return rwm is identical

for different m. Therefore, the wall return rw actually lives within a subspace which has

much smaller dimension than SD. Define D̂ := 1√
M

[DH
0 DH

1 · · · DH
M−1]H .
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Corollary 5.6. Fix ε ∈ (0, 1). Choose Jw = N(tL−t0)∆F (1+ε). Then there exist constants

C1, C2 and an integer N0 such that for all N ≥ N0

‖PD̂r
w‖2 ≤M

L∑
l=0

ϑlC1N
5/4e−C2N .

We omit the proof due to limited space. The dimension of SD̂ (the column space of D̂)

is Jw, which is smaller than the dimension of SD by a factor of M . The advantage of this

smaller dimension is that the projection operator PD̂ has less effect on the target return rt

than PD. We give an example to illustrate this. We simulate one line target of length 0.5m

located at (x, y) = (−0.29m, 5.38m), with complex reflectivity of 5. An M = 15-element

synthetic linear aperture (located along the x-axis) with interlement spacing of 4
M
m is used.

A stepped-frequency signal consisting of N = 101 frequencies from 1GHz to 3GHz is utilized

to obtain measurements. A front wall is located at y = 3.13m, i.e., 3.13m away from the

antennas.

We generate target return according to (5.13). On the basis of (5.12), L = 5 wall

reverberations are generated equally spaced between the wall and 1.5m behind the wall

with ϑ0 = 30 and ϑl = 1
1+l
ϑ0 for all l = 1, . . . , L. We have N(tL − t0)∆F = 20.2 ≈ 20.

Figure 5.1(a-b) respectively show the ability of D (and D̂) to capture the energy in the

wall return rw through the quantification SNR1 = 20 log10( ‖rw‖2
‖PDrw‖2

)dB and avoid the target

return rt through the quantification SNR2 = 20 log10( ‖rt‖2
‖rt−PDrt‖2

) with various Jw near 20.

As can be observed, thoughD and D̂ capture the same energy in the wall return, D̂ captures

less energy in the target return.

Also, as anticipated, both D and D̂ may capture non-negligible energy from the target

return if we choose Jw too large, whereas choosing Jw too small results in a dictionary that

cannot capture the wall return completely. There is a tradeoff between cancelling the wall

return and preserving the target return. By changing Jw, we can balance this tradeoff. In

general Jw ≈ N(tL − t0)∆F is recommended for most applications.

Wall clutter mitigation
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Figure 5.1: (a) SNR1 captured for wall return as a function of Jw; (b) SNR2 captured for
target return as a function of Jw.

Based on the discussion above, one could mitigate wall clutter antenna-by-antenna by

computing [145]

ỹm := PDmym = PDmr
w
m + PDmr

t
m.

Since PDmr
w
m ≈ 0, we get ỹm ≈ PDmr

t
m. The processed measurements could then be written

as

ỹ = PDy = PDr
w + PDr

t ≈ PDrt.

Alternatively, one could mitigate the wall clutter jointly by computing

ŷ = PD̂y = PD̂r
w + PD̂r

t ≈ PDrt.

Since PD̂ has less effect on the target return rt than PD, we adopt PD̂ for mitigating the

wall return.

5.3.3 Target Return Subspace

The dimensionality of target return subspaces

The target return observed by the m-th antenna corresponding to the k-th target can be

rewritten as rtk,m[n] =
∫ τmax

k,m

τmin
k,m

σk(τ)e−j2πf0τe−j2πnτ∆Fdτ. This indicates that rtk,m can be viewed
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as a linear combination of sampled exponentials ef with f ∈ [−τmax
k,m ∆F,−τmin

k,m∆F ]. Thus,

from Theorem 5.8, we expect this vector to approximately live within a low-dimensional

subspace spanned by certain modulated DPSS vectors. Define

Ψk,m := [E−∆F (τmin
k,m+τmax

k,m )/2SN,∆F (τmax
k,m −τ

min
k,m)/2]Jtk,m

for some value of J tk,m ∈ {1, 2, . . . , N}.

Theorem 5.9. [148] Fix ε ∈ (0, 1). Choose J tk,m = N(τmax
k,m − τmin

k,m )∆F (1 + ε). Then there

exist constants C1, C2 and an integer N0 such that for all N ≥ N0

‖PΨk,m
rtk,m‖2 ≤

√∫ τmax
k,m

τmin
k,m

σ2
k(τ)dτC1N

5/4e−C2N .

The above result indicates that rtk,m is approximately contained within the column space

of Ψk,m. Define

Ψk := diag(Ψ0,k, . . . ,ΨM−1,k). (5.15)

Let rtk := [(rtk,0)H · · · (rtk,M−1)H ]H denote the joint target return (across all antennas)

corresponding to the k-th target.

Corollary 5.7. Fix ε ∈ (0, 1). Choose J tk,m = N(τmax
k,m − τmin

k,m )∆F (1 + ε). Then there exist

constants C1, C2 and an integer N0 such that for all N ≥ N0

‖PΨk
rtk‖2 ≤

M−1∑
m=0

√∫ τmax
k,m

τmin
k,m

σ2
k(τ)dτC1N

5/4e−C2N .

This result follows directly from Theorem 5.9. In words, the target return rtk lives ap-

proximately within SΨk
, the subspace spanned by the columns of Ψk. The dimension of SΨk

is J tk :=
∑M−1

m=0 J
t
k,m.

Now, similar to the case of the wall return, if we utilize the fact that {rtk,m}m correspond

to the same target, we expect that the joint target return rtk can be captured using a subspace
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with dimension much smaller than SΨk
. Divide the k-th target uniformly into P points and

construct Gk,m ∈ CN×P with entries given by

Gk,m[n, p] := e−j2πfnτp,m (5.16)

for n ∈ [N ] and p ∈ [P ]. Here τp,m denotes the two-way travel time between the p-th point

position and the m-th transceiver. One can approximate rtk,m as a linear combination of the

columns of Gk,m. In fact, an approximate method to generate the modulated DPSS basis

Ψk,m (whose columns are also the eigenvectors of the covariance matrix of a randomly chosen

sinusoid in the frequency band of interest, see [32]) is by computing the left singular vectors

of Gk,m.

Choosing P sufficiently large, the matrix Gk,m is approximately low rank with effective

rank ≈ N(τmax
k,m − τmin

k,m )∆F . Arrange {Gk,m}m∈[M ] as

Gk := [GH
k,0 G

H
k,1 · · · GH

k,M−1]H . (5.17)

Now, one can approximate rtk as a linear combination of the columns of Gk,m. The effec-

tive rank of Gk is upper bounded by ≈
∑M−1

m=0 N(τmax
k,m − τmin

k,m )∆F and lower bounded by

maxmN(τmax
k,m − τmin

k,m )∆F . We use an example to illustrate the low rank structure in both

Gk,m and Gk. With the same setup to that in Section 5.3.2, we set P = 50. Figure 5.2(a-b)

display the singular values of G1,0 and G1, respectively. We observe that the effective rank

of G1 is only slightly larger than G1,0. Here N(τmax
1,0 − τmin

1,0 )∆F = 2.04 ≈ 2. Although

not shown in the plot, we also note that the effective ranks of Gk,m and Gk both scale

proportionally with the size of the target.

Let Gk,m = Uk,mΣk,mV
H
k,m be an SVD of Gk,m, where Σk,m is a diagonal matrix with

singular values γ(p)
k,m (which are arranged in non-increasing order, i.e., γ(0)

k,m ≥ γ
(1)
k,m ≥ · · · )

along its diagonal. For given 0 < β < 1, define J tk,m as the number of singular values that

are greater than βγ(0)
k,m, i.e., J

t

k,m := #{p, γ(p)
k,m ≥ βγ

(0)
k,m}. Define J tk :=

∑M−1
m=0 J

t

k,m. Similarly,

letGk = UkΣkV
H
k be an SVD ofGk, where Σk is a diagonal matrix with singular values γ(p)

k
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(which are arranged in non-increasing order) along its diagonal. Let Ĵ tk denote the number

of singular values that are greater than βγ(0)
k . Define

Ψk := diag([Uk,0]
J
t
k,0
· · · [Uk,M−1]

J
t
k,M−1

), Ψ̂k := [Uk]Ĵtk
,

where [Uk,m]
J
t
k,m

is obtained by taking the first J tk,m columns of Uk,m. Similar notation holds

for [Uk]Ĵtk
.

We add one more line target of length 0.5m located at (1.55m, 6.38m), with relative

complex reflectivity of 3. Figure 5.2(c) shows J t1, J
t

1 and Ĵ t1 for various β. Here set J tk,m =

J
t

k,m and thus J t1 = J
t

1. We observe that the effective dimensionality of the first target return

subspace is much smaller when we consider the antennas jointly. Figure 5.2(d-e) respectively

show the ability of Ψ1 (and Ψ1, Ψ̂1) to capture the energy in the first target return rt1

through the quantification SNR1 = 20 log10(
‖rt1‖2
‖PΨ1

rt1‖2

)dB and to avoid the second target

return rt2 through the quantification SNR2 = 20 log10(
‖rt2‖2

‖rt2−PΨ1
rt2‖2

) with various β. As can

be seen, Ψ1,Ψ1 and Ψ̂1 have almost the same ability to represent the first target return rt1.

However, compared to Ψ1 and Ψ1, Ψ̂1 captures less energy in the second target return rt2.

This advantage owes to the fact that Ψ̂1 has a much smaller number of columns.

Target detection

Following the general approach for radar imaging [2], the target space is divided uniformly

into a grid of Lx × Ly pixels. We arrange the pixels of the image into an LxLy × 1 vector

α. Define Θm ∈ CN×LxLy with entries given by Θm[n, q] := e−j2πfnτq,m for n ∈ [N ] and

q ∈ [LxLy − 1]. Here τq,m denotes the two-way travel time between the q-th grid and the

m-th transceiver. The target return can be written as rtm = Θmα if the targets are points

and located precisely on the grid. Define Θ := [ΘH
0 · · · ΘH

M−1]H .

In order to detect and localize the non-point targets, we [146, 145] modify the iterative,

greedy matching pursuit (MP) algorithm [93] so that the energy of exponentials with two-way

traveling time close to that of each selected point is cancelled by using a modulated DPSS

basis. To account for and cancel off-grid target return, for each q ∈ [LxLy − 1], we generate
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Figure 5.2: (a) The singular values of G1,0; (b) the singular values of G1; (c) the effective
dimensionality against β; (d) SNR1 captured for the first target return against β; (e) SNR2

captured for the second target return against β.

Ψq and Ψ̂q by uniformly dividing a region centered at grid point q with size Rxm × Rym

into Fx × Fy points, constructing Gq,m as defined in (5.16) with P = FxFy, constructing

Gq as defined in (5.17), and finally computing the left singular vectors of Gq,m and Gq.

Throughout the simulations, we choose Rx = 1, Ry = 0.3, Fx = 12 and Fy = 6. Ψq is also

generated for this region according (5.15). The full subspace-based MP algorithm for target

detection is shown in Algorithm 1. As shown in the merge step, in each iteration when we

pick one pixel in the grid, we also choose its neighbors (from two pixels to the left to two

pixels to the right). We note that this step (adding its neighbors) is used only to improve

the imaging result, but has no effect in detection. The size of the neighbors can be adapted

to the particular application.
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Algorithm 1 Subspace-based Matching Pursuit.
Require: Θ with columns θj, ŷ, number of iterations I
Ensure: r0 = ŷ, α̂ = 0, i = 0,Λ0 = ∅
1: while i < I do
2: identify: j0 = arg maxj |θHj ri|/||θj||2
3: merge: Λi+1 = Λi ∪ {j0 − 2, j0 − 1, j0, j0 + 1, j0 + 2}
4: update: ri+1 = PΨj0

ri (or PΨj0
ri, PΨ̂j0

ri)
i = i+ 1

5: end while
6: return α̂ = Θ†Λŷ

5.3.4 Simulations

With the same setup to that in Section 5.3.2, we simulate eight line targets of length

0.5m as listed in Table 5.1. The 4m × 5.5m region centered at (0m, 4.75m) is chosen to be

imaged, and it is divided into a grid of 33 × 77 pixels. The number Jw for the bandpass

modulated DPSS dictionary D is chosen to be 30. We choose β = 10%.

Table 5.1: The location and reflectivity of the targets
k 1 2 3 4 5 6 7 8

x(m) -0.29 1.55 -1.69 -1.78 1.67 0.29 1 -1.3
y(m) 5.38 6.38 6.58 4.93 5.03 6.6 4.97 3.63
σ 5 3 2 1 1 1 1 1

Figure 5.3(b-d) respectively display the target reconstruction result with 8 iterations of

the subspace-based MP algorithm involving Ψ, Ψ and Ψ̂ (which means we use Ψj0 , Ψj0 and

Ψ̂j0 respectively in Algorithm 1). We note that the wall clutter can be captured well by D̂

and due to the limited space, we only show the region containing the targets in Figure 5.3.

Clearly, we observe that the algorithm with Ψ̂ can find the second and the fifth targets which

are very close to each other, while the algorithms with Ψ and Ψ miss the fifth target.

As we have explained, the wall and target return subspaces have much smaller dimen-

sionality when we consider them jointly across all antenna elements than separately for each

antenna. This experiment demonstrates the advantage of using the joint target subspace in

target detection.
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Figure 5.3: Illustration of (a) the true target locations; and wall mitigation with D̂ and
target detection with subspace-based MP algorithm involving (b) Ψ; (c) Ψ; (d) Ψ̂.
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CHAPTER 6

ON THE ASYMPTOTIC EQUIVALENCE OF CIRCULANT AND TOEPLITZ

MATRICES

Motivated by the facts that Toeplitz matrices appear naturally for parameterized sub-

space models (for example, the prolate matrix defined in (2.11) is Toeplitz) and that the

number of large eigenvalues of Toeplitz matrices reveal the required dimensionality of a

potential subspace for representing signals obeying certain parameterized subspace model

(see Section 2.7 and Section 7.1), in this chapter12, we study a fast way to approximately

compute the spectrum of Toeplitz matrices HN (see (2.22) for the formal definition of Toe-

pltiz matrices). Rather than invoking the Szegő’s theorem which requires the information of

the generating function h̃ (see Section 2.8), we construct circulant matrices that are asymp-

totically equivalent to the Toepltiz matrices. We then provide conditions under which the

asymptotic equivalence of the matrices implies the individual asymptotic convergence of the

eigenvalues. Our results suggest that instead of directly computing the eigenvalues of a

Toeplitz matrix, one can compute a fast spectrum approximation using the FFT.

6.1 Motivation

Despite the power of Szegő’s theorem (see Section 2.8), in many scenarios (such as cer-

tain coding and filtering applications [54, 104]), one may only have access to HN and not

its generating function h̃. In such cases, it is still desirable to have practical and efficiently

computable estimates of individual eigenvalues of HN . We elaborate on two example appli-

cations below.

i. Estimating the condition number of a positive-definite Toeplitz matrix. The

linear system HNy = b arises naturally in many signal processing and estimation problems

12This work is in collaboration with Michael B. Wakin [149].
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such as linear prediction [91, 73]. The condition number κ(HN) of the Toeplitz matrixHN is

important when solving such systems. For example, the speed of solving such linear systems

via the widely used conjugate gradient method is determined by the condition number: the

larger κ(HN), the slower convergence of the algorithm. In case of large κ(HN), precondi-

tioning can be applied to ensure fast convergence. Thus estimating the smallest and largest

eigenvalues of a symmetric positive-definite Toeplitz matrix (such as the covariance matrix

of a stationary random process) is of considerable interest [36, 84].

ii. Spectrum sensing algorithm for cognitive radio. Spectrum sensing is a funda-

mental task in cognitive ratio, which aims to best utilize the available spectrum by identifying

unoccupied bands [97, 61, 142]. Zeng and Ling [142] have proposed spectrum sensing meth-

ods for cognitive radio based on the eigenvalues of a Toeplitz covariance matrix. These

eigenvalue-based algorithms overcome the noise uncertainty problem which exists in alterna-

tive methods based on energy detection.

Aside from the above applications, approximate and efficiently computable eigenvalue

estimates can also be used as the starting point for numerical algorithms that iteratively

compute eigenvalues with high precision.

6.2 Circulant Approximations

In this section, we consider estimates for the eigenvalues of a Toeplitz matrix that are

obtained through a two-step process:

1. Transform the Toeplitz matrix into a circulant matrix using a certain procedure de-

scribed below.

2. Compute the eigenvalues of the circulant matrix.

Both of these steps can be performed efficiently; in particular, the eigenvalues of an N ×N

circulant matrix can be computed in O(N logN) time using the fast Fourier transform (FFT).

The individual eigenvalues of the circulant matrix approximate those of the Toeplitz matrix.
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We study the quality of this approximation.

An N ×N circulant matrix CN is a special Toeplitz matrix of the form

CN =


c[0] c[1] c[2] . . . c[N − 1]

c[N − 1] c[0] c[1]

c[N − 2] c[N − 1] c[0]
...

... . . .
c[1] · · · c[0]

 .

Circulant matrices arise naturally in applications involving the discrete Fourier transform

(DFT) [104]; in particular, any circulant matrix can be unitarily diagonalized using the DFT

matrix. Circulant matrices offer a nontrivial but simple set of objects that can be used for

problems involving Toeplitz matrices. For example, the product HNx can be computed in

O(N logN) time by embeddingHN into a (2N−1)×(2N−1) circulant matrix and using the

FFT to perform matrix-vector multiplication. Also Gray [54, 55] showed that Toeplitz and

circulant matrices are asymptotically equivalent in a certain sense; this implies that their

eigenvalues have similar collective behavior. See Section 6.3.1 for formal definitions. Finally,

we note that circulant matrices have been used as preconditioners [122, 22] of Toeplitz

matrices in iterative methods for solving linear systems of the form HNy = b.

We consider estimates for the eigenvalues of a Toeplitz matrix obtained from a well-

constructed circulant matrix. The eigenvalues of the circulant matrix can be computed

efficiently without constructing the whole matrix; one merely applies the FFT to the first

row of the matrix. We do not provide new circulant approximations to Toeplitz matrices

in this paper; rather we sharpen the analysis on the asymptotic equivalence of Toeplitz

and certain circulant matrices [54, 104, 55] by establishing results in terms of individual

eigenvalues rather than collective behavior. To the best of our knowledge, this is the first

work that provides guarantees for asymptotic equivalence in terms of individual eigenvalues.

We consider the following circulant approximations that have been widely used in infor-

mation theory and applied mathematics.
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Type I: C̃N

Bogoya et al. [12] proved that the samples of the symbol h̃ are the main asymptotic terms

of the eigenvalues of the Toeplitz matrix HN . Given only HN , one practical strategy for

estimating the eigenvalues is to first approximate h̃ by the (N − 1)th partial Fourier sum

SN−1(f) =
∑N−1

k=−(N−1) h[k]ej2πfk. Then construct a circulant matrix whose eigenvalues are

samples of SN−1(f), i.e., SN−1( l
N

). We let C̃N denote the corresponding circulant matrix,

whose top row (c̃[0], c̃[1], . . . , c̃[N − 1]) can be obtained as

c̃[k] =
1

N

N−1∑
n=0

SN−1(
2πn

N
)ej2πkn/N =

1

N

N−1∑
n=0

N−1∑
k′=−(N−1)

h[k′]ej2π(k+k′)n/N

=
N−1∑

k′=−(N−1)

h[k′]

(
N−1∑
n=0

1

N
ej2π(k+k′)n/N

)
=

{
h[0], k = 0,
h[−k] + h[N − k], k = 1, 2, . . . , N − 1,

where the last line utilizes the fact

N−1∑
n=0

1

N
ej2π(k+k′)n/N =

 1, mod(k + k′, N) = 0,

0, otherwise.

Type II: ĈN

Following the same strategy, we first compute the
(⌊

N−1
2

⌋)th partial Fourier sum

SbN−1
2
c(f) =

bN−1
2 c∑

k=−bN−1
2 c

h[k]ej2πfk.

Let ĈN denote the N ×N circulant matrix whose eigenvalues are samples of SbN−1
2 c(f), i.e,

SbN−1
2 c(

l
N

). With simple manipulations, the top row (ĉ[0], ĉ[1], . . . , ĉ[N − 1]) of ĈN is given

by
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ĉ[k] =


h[−k], 0 ≤ k ≤ bN−1

2
c,

h[N − k], dN+1
2
e ≤ k < N,

0, k = N/2,

when N is even, and

ĉ[k] =

{
h[−k], 0 ≤ k ≤ bN−1

2
c,

h[N − k], dN+1
2
e ≤ k < N,

when N is odd.

Strang [122] first employed such circulant matrices as preconditioners to speed up the

convergence of iterative methods for solving Toeplitz linear systems. This approach is quite

simple. The underlying idea is that the sequence h[k] usually decays quickly as k grows large,

and thus we keep the largest part of the Toeplitz matrix and fill in the remaining part to

form a circulant approximation.

Type III: CN

In the Fourier analysis literature, it is known that Cesàro sum has rather better conver-

gence than the partial Fourier sum [77]. The N th Cesàro sum is defined as

σN(f) =

∑N−1
n=0 Sn(f)

N
.

We use CN to denote the N ×N circulant matrix whose eigenvalues are samples of σN(f),

i.e., σN( l
N

). The top row (c[0], c[1], . . . , c[N − 1]) of CN can be obtained as follows

c[k] =
1

N

N−1∑
l=0

σN(
l

N
)ej2πkl/N =

1

N

N−1∑
l=0

1

N

N−1∑
n=0

n∑
k′=−n

h[k′]ej2πl(k+k′)/N

=
1

N

N−1∑
n=0

n∑
k′=−n

(
h[k′]

N−1∑
l=0

1

N
ej2πl(k+k′)/N

)
=

1

N
((N − k)h[−k] + kh[N − k]) .

Pearl [104] first analyzed such a circulant approximation and its applications in coding

and filtering. The same circulant approximation (referred to as an optimal preconditioner)
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was also proposed by Chan [22]. The optimal preconditioner is the solution to the following

optimization problem

minimize ‖CN −HN‖F

over all N × N circulant matrices. One can verify that CN is the solution to the above

problem.

6.3 Asymptotic Equivalence of Circulant and Toeplitz Matrices

We first give out the notion of asymptotic equivalence of two set of matrices.

6.3.1 Asymptotically Equivalent Matrices

We begin with the notion of equal distribution of two real sequences, using a definition

attributed to Weyl [56].

Definition 6.1. [56] Assume that the sequences {{uN,l}l∈[N ]}∞N=1 and {{vN,l}l∈[N ]}∞N=1 are

absolutely bounded, i.e., there exist a, b such that a ≤ uN,l ≤ b and a ≤ vN,l ≤ b for all

l ∈ [N ] and N ∈ N. Then {{uN,l}l∈[N ]}∞N=1 and {{vN,l}l∈[N ]}∞N=1 are equally distributed if

lim
N→∞

1

N

N−1∑
l=0

(ϑ (uN,l)− ϑ (vN,l)) = 0.

for every continuous function ϑ on [a, b].

The asymptotic equivalence of two sequences of matrices is defined as follows.

Definition 6.2. [54, 55] Two sequences of N × N matrices {AN} and {BN} (where AN

and BN denote N ×N matrices) are said to be asymptotically equivalent if

lim
N→∞

‖AN −BN‖F√
N

= 0

and there exists a constant M <∞ such that

‖AN‖2 , ‖BN‖2 ≤M, ∀N ∈ N.
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Following the convention in Gray’s monograph [55], we write AN ∼ BN if {AN} and

{BN} are asymptotically equivalent. This kind of asymptotic equivalence is transitive, i.e.,

if AN ∼ BN and BN ∼ CN , then AN ∼ CN . Additional properties of ∼ can be found

in [55]. The following result concerns the asymptotic eigenvalue behavior of asymptotically

equivalent Hermitian matrices.

Theorem 6.1. [55, Theorem 2.4] Let {AN} and {BN} be asymptotically equivalent se-

quences of Hermitian matrices with eigenvalues {{λl (AN)}l∈[N ]}∞N=1 and {{λl (BN)}l∈[N ]}∞N=1.

Then there exist constants a and b such that

a ≤ λl (AN) , λl (BN) ≤ b, ∀ l ∈ [N ], N ∈ N.

Let ϑ be any function continuous on [a, b]. We have

lim
N→∞

1

N

N−1∑
l=0

(ϑ (λl (AN))− ϑ (λl (BN))) = 0.

In light of this theorem, Definition 6.2 can be viewed as the matrix equivalent of Defini-

tion 6.1.

6.3.2 Asymptotic Equivalence of Circulant and Toeplitz Matrices

Any circulant matrix CN is characterized by its top row. Note that

(
CNe(N−l)/N

)
[k] =

N−1∑
n=0

c[n]ej2π(N−l)(k+n)/N = ej2π(N−l)k/N

(
N−1∑
n=0

c[n]e−j2πln/N

)
,

which implies that

CNe(N−l)/N =

(
N−1∑
n=0

c[n]e−j2πln/N

)
e(N−l)/N .

Thus the normalized DFT basis vectors
{

1√
N
el/N

}
l∈[N ]

are the eigenvectors of any circulant

matrix CN , and the corresponding eigenvalues are obtained by taking the DFT of the first
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row of CN . Specifically,

λl (CN) =
N−1∑
n=0

c[n]e−j2πln/N ,

which can be computed efficiently via the FFT. We note that {λl (CN)}l∈[N ] are not neces-

sarily arranged in any particular order; namely, they do not necessarily decrease with l.

For a sequence of Toeplitz matrices {HN} and their respective circulant approximations

discussed before, the following result establishes asymptotic equivalence in terms of the

collective behaviors of the eigenvalues. As a reminder, we assume throughout this paper

that each HN is Hermitian; this ensures that all CN ∈
{
C̃N , ĈN ,CN

}
are Hermitian as

well.

Lemma 6.1. Suppose that the sequence h[k] is square summable and HN , C̃N , ĈN ,CN are

absolutely bounded13 for all N ∈ N. Then

HN ∼ ĈN ∼ C̃N ∼ CN ,

and

lim
N→∞

1

N

N−1∑
l=0

(ϑ(λl(HN))− ϑ(λl(CN))) = 0,

where ϑ is any continuous function on [a, b] and CN ∈
{
C̃N , ĈN ,CN

}
. Here [a, b] is the

smallest interval that covers all the eigenvalues of HN , C̃N , ĈN , and CN .

The proof is given in Appendix D.5. A stronger result follows simply from the elementary

view of Weyl’s theory of equal distribution [126], which is presented in Lemma D.6. As a

reminder, we do assume that the eigenvalues of each Toeplitz matrix are ordered such that

λ0(HN) ≥ · · · ≥ λN−1(HN).

Lemma 6.2. Suppose that the sequence h[k] is square summable and HN , C̃N , ĈN ,CN are

absolutely bounded. Let λl(CN) be permuted that such that λρ(0)(CN) ≥ λρ(1)(CN) ≥ · · · ≥
13We say a matrix A is absolutely bounded if its spectral norm (or largest singular value) ‖A‖2 is bounded.
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λρ(N−1)(CN). Then

lim
N→∞

1

N

N−1∑
l=0

∣∣ϑ(λl(HN))− ϑ(λρ(l)(CN))
∣∣ = 0

for every function ϑ that is continuous on [a, b] and CN ∈
{
C̃N , ĈN ,CN

}
. Here [a, b] is the

smallest interval that covers all the eigenvalues of HN , C̃N , ĈN , and CN .

This result follows simply from Lemmas 6.1 and D.6.

6.4 Individual Eigenvalue Estimates

Let {λl (CN)}l∈[N ] denote the eigenvalues of the circulant matrix CN for all CN ∈{
C̃N , ĈN ,CN

}
. Let λl(CN) be permuted that such that λρ(0)(CN) ≥ λρ(1)(CN) ≥ · · · ≥

λρ(N−1)(CN). As the main contributions of this chapter, in this section, we establish the

following results, whose proof is given in Appendix D.

Theorem 6.2. Suppose that the sequence h[k] is absolutely summable. Then

lim
N→∞

max
l∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ = 0, (6.1)

for all CN ∈
{
C̃N , ĈN ,CN

}
.

Theorem 6.2 states that the individual asymptotic convergence of the eigenvalues between

the Toeplitz matricesHN and circulant matrices CN ∈
{
C̃N , ĈN ,CN

}
holds as long as h[k]

is absolutely summable. Its proof involves the uniform convergence of a Fourier series and the

fact that the equal distribution of two sequences implies individual asymptotic equivalence

of two sequences in a certain sense. By utilizing the Sturmian separation theorem [67], we

also provide the convergence rate for band Toeplitz matrices as follows.

Theorem 6.3. Suppose that h[k] = 0 for all k > r, i.e., HN is a band Toeplitz matrix when

N > r. Then
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max
l∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ = O(

1

N
) (6.2)

as N →∞ for all CN ∈
{
C̃N , ĈN ,CN

}
.

Utilizing the fact that the Cesàro sum has rather better convergence than the partial

Fourier sum, the following result establishes a weaker condition on h[k] for the individual

asymptotic convergence of the eigenvalues between HN and CN .

Theorem 6.4. Suppose that h[k] is square summable and h̃ ∈ L∞([0, 1]) is Riemann inte-

grable and the essential range of h̃ is
[
ess inf h̃, ess sup h̃

]
, i.e., the essential range of h̃ is

connected. Then

lim
N→∞

max
l∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ = 0. (6.3)

Note that the sequence h[k] being absolutely summable implies that h[k] is square

summable, that h̃ ∈ L∞([0, 1]) is Riemann integrable, and that its range is connected. How-

ever, the converse of this statement does not hold. We provide an example in the simulation

part.

Finally, the following result concerns the convergence of the largest and smallest eigen-

values for more general classes of Toeplitz matrices.

Theorem 6.5. Suppose that h̃ ∈ L∞([0, 1]) is Riemann integrable. Then

lim
N→∞

λ0 (HN) = lim
N→∞

λρ(0)

(
CN

)
= ess sup h̃,

lim
N→∞

λN−1 (HN) = lim
N→∞

λρ(N−1)

(
CN

)
= ess inf h̃.

Laudadio et al. [84] summarized several algorithms to estimate the smallest eigenvalue

of a symmetric positive-definite Toeplitz matrix. These algorithms need O(N2) flops. Com-
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puting λρ(N−1)

(
CN

)
via the FFT requires O(N logN) flops, and at the same time, we are

guaranteed that λρ(N−1)(CN) is asymptotically equivalent to λN−1 (HN) by Theorem 6.5.

The above results—characterizing the individual asymptotic convergence of the eigen-

values between Toeplitz and circulant matrices—serve as complements to the literature on

asymptotic equivalence that has focused on the collective behavior of the eigenvalues. Before

moving on, we briefly review said literature. In [54, 55], Gray showed the asymptotic equiva-

lence of {HN} and {C̃N} when the sequence h[k] is absolutely summable. Pearl showed the

asymptotic equivalence of {HN} and {CN} when the sequence h[k] is square summable and

HN and CN have bounded eigenvalues for all N ∈ N. The spectrum of the preconditioned

matrix C−1
N HN asymptotically clustering around one was investigated in [19, 21, 20, 130].

Finally, as noted previously, Bogoya et al. [12] studied the individual asymptotic behavior

of the eigenvalues of Toeplitz matrices by interpreting Szegő’s theorem in probabilistic lan-

guage. Our estimates for the eigenvalues of a Toeplitz matrix differ from [12] in that they are

only dependent on the entries of HN (instead of the symbol h̃(f)). For our proof, we utilize

the same approach of interpreting Szegő’s theorem in probabilistic language. However, [12]

requires the sequences of the eigenvalues to be strictly inside the range of h̃, while our work

covers more general cases where the sequences of the eigenvalues can be outside of the range

of h̃ as illustrated in Theorem D.1. See also our remark at the end of Section D.3.

6.5 Simulations

In this section, we provide several examples to illustrate our theory. In the legends

of Figure 6.1–Figure 6.3, we refer to the circulant approximations C̃N , ĈN , and CN as

Circulant1, Circulant2, and Circulant3, respectively.

Case I: h[k] = W
(

sin(πWk)
πk

)2

,W = 1
4
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Figure 6.1: (a) Illustration of a continuous symbol h̃(f). (b) The eigenvalues of the Toeplitz
matrixHN and the circulant approximations C̃N , ĈN , and CN , arranged in decreasing order.
Here N = 500. (c) A plot of maxl∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ versus the dimension N for all

CN ∈
{
C̃N , ĈN ,CN

}
.

In our first example, the sequence h[k] is absolutely summable and the corresponding

symbol

h̃(f) = tri(
f

W
) =


1− f

W
, 0 ≤ f ≤ W

1− 1−f
W
, 1−W ≤ f ≤ 1

0, otherwise

is a triangular signal, which is continuous on [0, 1]. Figure 6.1(a) shows h̃, Figure 6.1(b)

shows λl(HN), λρ(l)(C̃N), λρ(l)(ĈN) and λρ(l)(CN) for N = 500, and Figure 6.1(c) shows

maxl∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ against the dimension N for all CN ∈

{
C̃N , ĈN ,CN

}
. As

guaranteed by Theorem 6.2, it can be observed in Figure 6.1(c) that the individual asymptotic

convergence of eigenvalues holds for all C̃N , ĈN , and CN .

Case II: h[k] = 1+(−1)k

j2πk

In this case, the sequence h[k] is not absolutely summable and the symbol

h̃(f) =

 2f, 0 < f ≤ 1
2

2f − 1, 1
2
< f ≤ 1
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Figure 6.2: (a) Illustration of a discontinuous symbol h̃(f). (b) The eigenvalues of the
Toeplitz matrix HN and the circulant approximations C̃N , ĈN , and CN , arranged in de-
creasing order. Here N = 500. (c) A plot of maxl∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ versus the

dimension N for all CN ∈
{
C̃N , ĈN ,CN

}
.

is not continuous, but its range is connected. Figure 6.2(a) shows h̃, Figure 6.2(b) shows

λl(HN), λρ(l)(C̃N), λρ(l)(ĈN) and λρ(l)(CN) for N = 500, and Figure 6.2(c) shows

max
l∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣

against the dimension N for all CN ∈
{
C̃N , ĈN ,CN

}
. It is observed from Figure 6.2(c)

that the individual asymptotic convergence of the eigenvalues holds for CN—as guaran-

teed by Theorem 6.4—but not for C̃N and ĈN . Figure 6.2(c) also shows that the errors

maxl∈[N ]

∣∣∣λl(HN)− λρ(l)(C̃N)
∣∣∣ and maxl∈[N ]

∣∣∣λl(HN)− λρ(l)(ĈN)
∣∣∣ converge to the size of the

Gibbs jump (≈ 0.089).

Case III: h[k] = sin(2πWk)
πk

,W = 1
4

In this example, the sequence h[k] is not absolutely summable and the symbol

h̃(f) =

 0, W < f ≤ 1−W,

1, otherwise,

is a rectangular window function, which is not continuous and whose range is not connected.

Figure 6.3(a) shows h̃, Figure 6.3(b) shows λl(HN), λρ(l)(C̃N), λρ(l)(ĈN) and λρ(l)(CN) for

N = 2048, and Figure 6.3(c) shows maxl∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ against the dimension
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Figure 6.3: (a) Illustration of a discontinuous symbol h̃(f) whose range is not con-
nected. (b) The eigenvalues of the Toeplitz matrix HN and the circulant approxima-
tions C̃N , ĈN , and CN , arranged in decreasing order. Here N = 2048. (c) A plot
of maxl∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ versus the dimension N for all CN ∈

{
C̃N , ĈN ,CN

}
.

(d) The eigenvalues of the Toeplitz matrix HN . (e) The eigenvalues of the circulant
matrix CN , arranged in decreasing order. (f) A plot of

∣∣λ0(HN)− λρ(0)(CN)
∣∣ and∣∣λN−1(HN)− λρ(N−1)(CN)

∣∣ versus the dimension N .

N for all CN ∈
{
C̃N , ĈN ,CN

}
. Figure 6.3(c) illustrates that the individual asymptotic

convergence of eigenvalues does not hold for the circulant matrices C̃N , ĈN , andCN . Indeed,

the sequence h[k] does not meet the assumptions in either Theorem 6.2 or Theorem 6.4.

Due to the gap (between 0 to 1) in the range of the window function h̃, the eigenvalues

of HN and CN have different behavior in the transition region. To better illustrate this,

Figure 6.3(d) and Figure 6.3(e), respectively, show λl(HN) and λρ(l)(CN) for N = 2048. We

see that the eigenvalues of the Toeplitz matrixHN cover the range [0, 1] somewhat uniformly,

while the eigenvalues of the CN tend to cluster around 0, 1/2, and 1 (there are none near

1/4 or 3/4). The following result formally explains the transition behavior of the eigenvalues
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of HN .

Lemma 6.3. [35, 118, 148] Let h[k] = sin(2πWk)
πk

with W = 1
4
. Fix ε ∈ (0, 1

2
). Then there

exist constants C1, C2 and N1 such that the distance between any 2 consecutive eigenvalues

of HN inside (ε, 1− ε) is bounded from below by C1

ln(N)
and from above by C2

ln(N)
; that is

C1

ln(N)
≤ λl(HN)− λl+1(HN) ≤ C2

ln(N)

for all ε ≤ λl+1(HN) ≤ λl(HN) ≤ 1− ε and N ≥ N1. Also

λb 1
2
Nc−1 ≥

1

2
≥ λd 1

2
Ne

for all N ∈ N.

On the other hand, we have the following result on the eigenvalues of CN . Its proof is

given in Appendix D.8.

Lemma 6.4. Let h[k] = sin(2πWk)
πk

with W = 1
4
. Then

∣∣∣∣λl (CN

)
− 1

2

∣∣∣∣ { = 0, l = N/4, 3N/4,
≥ α, l ∈ [N ] and l 6= N/4, 3N/4,

with α = 0.4 if N is a multiple of 4.

With more sophisticated analysis, we believe that the above result could be improved to

α ≈ 0.45. This is suggested by Figure 6.3(e).

Combining Lemmas 6.3 and 6.4, we conclude that maxl∈[N ]

∣∣λl(HN)− λρ(l)(CN)
∣∣ ap-

proaches ≈ 0.2 as N →∞ and N is a multiple of 4.

Finally, Figure 6.3(f) plots
∣∣λ0(HN)− λρ(0)(CN)

∣∣ and ∣∣λN−1(HN)− λρ(N−1)(CN)
∣∣ against

the dimension N . As can be observed, the largest and smallest eigenvalues of CN converge

to the largest and smallest eigenvalues of HN , respectively. This is as guaranteed by Theo-

rem 6.5.
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CHAPTER 7

TIME-FREQUENCY LIMITING OPERATORS ON GROUPS

One of the important pieces of progress in harmonic analysis made in last century is

the definition of the Fourier transform on locally compact abelian groups (i.e., harmonic

analysis on groups) [106]. This framework for harmonic analysis on groups not only unifies

the CTFT, DTFT, and DFT (for signal domains, or groups, corresponding to R, Z, and

ZN := {0, 1, . . . , N − 1}, respectively), but it also allows these transforms to be generalized

to other signal domains. This, in turn, makes possible the analysis developed in Chapters 3-5

for other parameterized subspace models appearing in applications such as steerable principal

component analysis (PCA) [133] where the domain is the rotation angle on [0, 2π), an imaging

system with a pupil of finite size [38], line-of-sight (LOS) communication systems with orbital

angular momentum (OAM)-based orthogonal multiplexing techniques [136], and many other

applications such as those involving rotations in three dimensions [25, Chapter 5].

In this chapter14, we review existing results on the eigenvalues of composite time- and

band-limiting operators and generalize these results to locally compact abelian groups15.

Applications of this unifying treatment are discussed in relation to channel capacity and to

representation and approximation of signals obeying certain parameterized subspace models.

7.1 The Effective Dimensionality of a Signal Family

One of the useful applications of characterizing the spectrum of Toeplitz operators (see

(7.4) and the following sentence for the definition of Toeplitz operators) is in computing

the effective dimensionality (or the number of degrees of freedom) of signals obeying cer-

tain parameterized subspace models. In this section, we formalize this notion of effective

dimensionality for a set of functions defined on a group G.

14This work is in collaboration with Michael B. Wakin.
15The formal definitions of groups and Fourier transform for functions defined on groups are in Section 2.10.
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7.1.1 Definitions

To begin, suppose A is a subset of G and let W(A, φ̂(ξ)) ⊂ L2(A) denote the set of

functions controlled by the symbol φ̂(ξ):

W(A, φ̂(ξ)) :=

{
x ∈ L2(A) : x(g) =

∫
Ĝ
α(ξ)φ̂(ξ)χξ(g) d ξ,

∫
|α(ξ)|2 d ξ ≤ 1, g ∈ A

}
, (7.1)

which is a subset of L2(A). We note that in (7.1), the symbol φ̂(ξ) is fixed and we will

discuss its role soon. It is clear that x obeys a parameterized subspace model as described

in Section 1.2.

Also let Mn ⊂ L2(G) denote an n-dimensional subspace of L2(G). The distance between

a point x ∈ L2(G) and the subspace Mn is defined as

d(x,Mn) := inf
y∈Mn

∫
(x(g)− y(g))2 d g =

∫
(x(g)− (PMnx)(g))2 d g = sup

z∈L2(G)
z⊥Mn

∣∣∣〈x, z〉L2(G)

∣∣∣
‖z‖L2(G)

,

(7.2)

where PMn : L2(G) → L2(G) represents the orthogonal projection onto the subspace Mn.

We define the distance d(W(A, φ̂(ξ)),Mn) between the set W(A, φ̂(ξ)) and the subspace Mn

as follows:

d(W(A, φ̂(ξ)),Mn) := sup
x∈W(A,φ̂(ξ))

d(x,Mn) = sup
x∈W(A,φ̂(ξ))

inf
y∈Mn

∫
(x(g)− y(g))2 d g,

which represents the largest distance from the elements in W(A, φ̂(ξ)) to the subspace Mn.

The Kolmogorov n-width [76], dn(W(A, φ̂(ξ))) of W(A, φ̂(ξ)) in L2(G) is defined as the

smallest distance d(W(A, φ̂(ξ)),Mn) over all n-dimensional subspaces of L2(G); that is

dn(W(A, φ̂(ξ))) := inf
Mn

d(W(A, φ̂(ξ)),Mn). (7.3)

In summary, the n-width dn(W(A, φ̂(ξ))) characterizes how well the set W(A, φ̂(ξ)) can

be approximated by an n-dimensional subspace of L2(G). By its definition, dn(W(A, φ̂(ξ)))
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is non-increasing in terms of the dimensionality n. For any fixed ε > 0, we define the effective

dimensionality, or number of degrees of freedom, of the set W(A, φ̂(ξ)) at level ε as [50]

N (W(A, φ̂(ξ)), ε) = min
{
n : dn(W(A, φ̂(ξ))) < ε

}
.

In words, the above definition ensures that there exists a subspace Mn of dimensionality

n = N (W(A, φ̂(ξ)), ε) such that for every function x ∈W(A, φ̂(ξ)), one can find at least one

function y ∈Mn so that the distance between x and y is at most ε.

We note that the reason we impose an energy constraint on the elements x of W(A, φ̂(ξ))

in (7.1) is that we use the absolute distance to quantify the proximity of x to the subspace

Mn in (7.2).

7.1.2 Connection to Operators

In order to compute N (W(A, φ̂(ξ)), ε), we may define an operator A : L2(Ĝ)→ L2(A) as

(Aα)(g) =

∫
Ĝ
α(ξ)φ̂(ξ)χξ(g) d ξ, g ∈ A.

The adjoint A∗ : L2(A)→ L2(Ĝ) is given by

(A∗x)(ξ) =

∫
A
x(g)φ̂∗(ξ)χ∗ξ(g) d g.

The composition of A and A∗ gives a self-adjoint operator AA∗ : L2(A)→ L2(A) as follows:

(AA∗x)(g) =

∫
Ĝ
φ̂(ξ)χξ(g)

∫
A
x(h)φ̂∗(ξ)χ∗ξ(h) dh d ξ

=

∫
A
x(h)

∫
Ĝ

∣∣∣φ̂(ξ)
∣∣∣2 χξ(h−1 ◦ g) d ξ dh

=

∫
A
x(h)(φ ? φ∗)(h−1 ◦ g) dh,

(7.4)

where φ(g) =
∫
Ĝ φ̂(ξ)χξ(g) d ξ is the inverse Fourier transform of φ̂. Because this linear

operator involves a kernel function φ ? φ∗(h−1 ◦ g) that depends only on the difference −1 ◦ g,

we refer to it as a Toeplitz operator.16

16Our notion of Toeplitz operators follows from the definition of Toeplitz operators in [56, Section 7.2].
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The following result will help in computing dn(W(A, φ̂(ξ))) and the effective dimensional-

ity of W(A, φ̂(ξ)) and choosing the optimal basis for representing the elements of W(A, φ̂(ξ)).

Proposition 7.1. Let the eigenvalues of AA∗ be denoted and arranged as λ1 ≥ λ2 ≥ · · · .

Then the n-width of W(A, φ̂(ξ)) can be computed as

dn(W(A, φ̂(ξ))) =
√
λn,

and the optimal n-dimensional subspace to represent W(A, φ̂(ξ)) is the subspace spanned by

the first n eigenvectors of AA∗.

The proof of Proposition 7.1 is given in Appendix E.1.

7.2 Time-Frequency Limiting Operators on Locally Compact Abelian Groups

Now we consider the time-frequency limiting operators on locally compact abelian groups.

As we have briefly explained before, time-frequency limiting operators in the context of the

classical groups where G are the real-line, Z, and ZN play important roles in signal processing

and communication. By considering time-frequency limiting operators on locally compact

abelian groups, we aim to (i) provide a unified treatment of the previous results on the eigen-

values of the operators resulting in PSWF’s, DPSS’s, and periodic DPSS’s (PDPSS’s) [71, 57];

and (ii) extend these results to other signal domains such as rotations in a plane and three di-

mensions [25, Chapter 5]. In particular, we will investigate the eigenvalues of time-frequency

limiting operators on locally compact abelian groups and show that they exhibit similar

behavior to both the conventional continuous time and discrete time settings: when sorted

by magnitude, there is a cluster of eigenvalues close to (but not exceeding) 1, followed by an

abrupt transition, after which the remaining eigenvalues are close to 0. This behavior also

resembles the rectangular shape of the frequency response of the original band-limiting oper-

ator. We will also discuss the applications of this unifying treatment in relation to channel

capacity and to representation and approximation of signals.

To introduce the time-frequency limiting operators, consider two subsets A ∈ G and

B ∈ Ĝ. Define TA : L2(G) → L2(G) as a time-limiting operator that makes a function zero
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outside A. Also define BB = F−1TBF : L2(G) → L2(G) as a band-limiting operator that

takes the Fourier transform of an input function on L2(G), sets it to zero outside B, and then

computes the inverse Fourier transform. The operator BB acts on L2(G) as a convolutional

integral operator:

(BBx)(g) =

∫
B
x̂(ξ)χξ(g) d ξ

=

∫
B

(∫
G
x(h)χ∗ξ(h) dh

)
χξ(g) d ξ

=

∫
G
KB(h−1 ◦ g)x(h) dh,

where

KB(h−1 ◦ g) =

∫
B
χ∗ξ(h)χξ(g) d ξ =

∫
B
χξ(h

−1 ◦ g) d ξ. (7.5)

It is of interest to study the eigenvalues of the following operators

OA,B = TABBTA, and BBTABB. (7.6)

Utilizing the expression for BB, the operator TABBTA acts on any x ∈ L2(G) as follows

(TABBTAx) (g) =

{∫
AKB(h−1 ◦ g)x(h) dh, g ∈ A

0, otherwise.

The operator OA,B is symmetric and completely continuous and we denote its eigenvalues

by λ`(OA,B). Due to the time- and band-limiting characteristics of the operator OA,B, the

eigenvalues of OA,B are between 0 and 1. To see this, let x(g) ∈ L2(A):

〈(OA,Bx)(g), x(g)〉 =

〈∫
A

∫
B
χξ(h

−1 ◦ g) d ξx(h) dh, x(g)

〉
=

∫
B

(∫
A

∫
A
χξ(h

−1 ◦ g)x(h)x∗(g) dh d g

)
d ξ

=

∫
B
|x̂(ξ)|2 d ξ ≥ 0.

On the other hand, we have
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∫
B
|x̂(ξ)|2 d ξ ≤

∫
Ĝ
|x̂(ξ)|2 d ξ =

∫
G
|x(g)|2 d g.

7.2.1 Eigenvalue Distribution of Time-Frequency Limiting Operators

To investigate the eigenvalues of the operator OA,B = TABBTA, we first note that without

the time-limiting operator TA, the eigenvalues of BB are simply given by the Fourier transform

of KB(g), and thus they are either 1 or 0. Our main question is how the spectrum of the

time-frequency limiting operator relates to the spectrum of the band-limited operator. Based

on the binary spectrum of BB, we expect that the eigenvalues of OA,B to have a particular

behavior: when sorted by magnitude, there should be a cluster of eigenvalues close to (but

not exceeding) 1, followed by an abrupt transition, after which the remaining eigenvalues

should be close to 0. Moreover, the number of effective (i.e., relatively large) eigenvalues

should be essentially equal to the time-frequency area |A||B|. These results are confirmed

below and reveal the dimensionality (or the number of degrees of freedom) of classes of

band-limited signals observed over a finite time, which is fundamental to characterizing the

performance limits of communication systems.

Before presenting the main results, we introduce new notation for subsets of G (or Ĝ)

which are asymptotically increasing to cover the whole group. This is similar to how we

discussed the case where N →∞ in Section 2.8. To that end, let Aτ , τ ∈ (0,∞) be a system

of open subsets of G such that 0 < µ(Aτ ) <∞. The subscript τ is sometimes dropped when

it is clear from the context. We can view Aτ as a set of open subsets that depend on the

parameter τ . One can also define a system of open subsets with multiple parameters. We

now preset one of our main results concerning the asymptotic behavior for the eigenvalues

of the time-frequency limiting operators OAτ ,B when Aτ approaches G.

Theorem 7.1. Suppose B is a fixed subset of Ĝ and let ε ∈ (0, 1
2
). Let

N (OAτ ,B; (a, b)) := # {` : a < λ`(OAτ ,B) < b}

denote the number of eigenvalues of TAτBBTAτ that is between a and b. Then if
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lim
τ→∞

Aτ = G (7.7)

holds almost everywhere, we have

∑
`

λ`(OAτ ,B) = |Aτ ||B|, (7.8)∑
`

λ2
`(OAτ ,B) = |Aτ ||B| − o(|Aτ ||B|), (7.9)

which immediately implies

lim
τ→∞

N (OAτ ,B; [1− ε, 1])

|Aτ |
= |B|, (7.10)

N (OAτ ,B; (ε, 1− ε)) = o(|Aτ ||B|). (7.11)

The proof of Theorem 7.1 is given in Appendix E.2. Theorem 7.1 formally confirms

that the spectra of the time-frequency limiting operators resemble the rectangular shape

of the spectrum of the band-limiting operator. As guaranteed by (7.10), the number of

effective eigenvalues of the time-frequency limiting operator is asymptotically equal to the

time-frequency area |Aτ ||B|. Similar results for time-frequency limiting operators in the

context of classical groups where G is Rn are given in [79, 51]. We discuss the applications

of Theorem 7.1 in channel capacity and representation and approximation of signals in more

detail in the following subsections.

As we explained before, the time-frequency limiting operators in the context of the

classical groups where G are the real-line, Z, and ZN were first studied by Landau, Pol-

lak, and Slepian who wrote a series of papers regarding the dimensionality of time-limited

signals that are approximately band-limited (or vice versa) [120, 81, 82, 115, 118] (see

also [117, 119] for concise overviews of this body of work). After that, a set of results con-

cerning the number of eigenvalues within the transition region (0, 1) have been established
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in [83, 45, 101, 69, 75, 143]. which will be reviewed in detail in the following remarks.

Remark 7.1. Using the explicit expressions for the character function χξ(g) and the kernel

KB(g) and applying integration by parts for (E.2), one can improve the second term in (7.9)

to O(log(|Aτ ||B|)) for many common one-dimensional cases:

• Suppose G = R and Ĝ = R. Let AT = [−T
2
, T

2
] (where τ = T in (7.7)) and B = [−1

2
, 1

2
]

without loss of generality. Then the kernel KB(t) turns out to be

KB(t) =

∫ 1
2

− 1
2

ej2πFt dF =
2 sin(πt)

πt
.

Plugging in this form into (E.2) gives [63]

∑
`

(λ`(OAT ,B))2 = T −O(log(T )).

In this case, the eigenfunctions of the operator OAT,B are known as PSWF’s.

• As an another example, suppose G = Z, Ĝ = [−1
2
, 1

2
] and let AN = {0, 1 . . . , N − 1}

(where τ = N in (7.7)), B = [−W,W ] with W ∈ (0, 1
2
). In this case, the kernel KB(t)

becomes

KB[n] =

∫ W

−W
ej2πfn d f =

sin(2πWn)

πWn
.

Then plugging in this form into (E.2) gives (see also Theorem 5.1)

∑
`

(λ`(OAN ,B))2 = 2NW −O(log(2NW )).

We note that in this case, the operator OAN ,B is equivalent to the N×N prolate matrix

BN,W with entries

BN,W [m,n] :=
sin (2πW (m− n))

π(m− n)
(7.12)

for all m,n ∈ {0, 1, . . . , N − 1}. The eigenvalues and eigenvectors of the matrix BN,W

are referred to as the DPSS eigenvalues and DPSS vectors, respectively.
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• As a final example, we consider G = ZN , Ĝ = ZN and the Fourier transform is the

conventional DFT. Suppose M,K ≤ N . Let

AM = {0, 1, . . . ,M − 1} , B = {0, 1, . . . , K − 1} , (7.13)

where τ = M in (7.7). In this case, χk[n] = ej2π
nk
N and the kernel KB[n] is

KB[n] =
K−1∑
k=0

ej2π
nk
N = ejπn

K−1
N

sin(π nK
N

)

sin(π n
N

)
.

Then plugging in this form into (E.2) gives [45, 143]

∑
l

(λ`(OAM ,B))2 =
MK

N
−O(log(

MK

N
)).

Through the above examples, one may wonder whether we can in general replace the second

term in (7.9) by O(log(|Aτ ||B|)) with a finer analysis of
∑

l(λ`(OAτ ,B))2. We utilize a two-

dimensional example to answer this question in the negative:

• Suppose G = Z2, Ĝ = [−1
2
, 1

2
] and let A = {0, 1 . . . , N − 1} × {0, 1 . . . , N − 1},B =

[−W,W ]× [−W,W ] with W ∈ (0, 1
2
). In this case, the kernel KB[n1, n2] is

KB[n1, n2] =

∫ W

−W

∫ W

−W
ej2πf1n1ej2πf2n2 d f1 d f2 =

sin(2πWn1)

πWn1

sin(2πWn2)

πWn2

.

The eigenvectors of the corresponding operator OA,B are known as the two-dimensional

DPSS’s. For this case, we have∑
`

(λ`(OAτ ,B))2 = 4N2W 2 −O(NW log(NW )).

In other words, we can only improve the second term in (7.9) to O(NW log(NW ))

rather than O(log(4N2W 2)).

Remark 7.2. We note that the transition region in (7.11) depends on ε in the form of O( 1
ε(1−ε))

because it is simply derived from (7.8) and (7.9). A better understanding of the transition

region requires further complicated analysis. In the literature, finer results on the transition

region are known for several common cases:
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• The results for the eigenvalue distribution of the continuous time-frequency localization

operator (where G = R, Ĝ = R, AT = [−T
2
, T

2
] and B = [−1

2
, 1

2
]) has a rich history.

As one example, for any ε ∈ (0, 1), Landau and Widom [83] provided the following

asymptotic result on N (OAT ,B; [ε, 1]):

N (OAT ,B; [ε, 1]) = T +

(
1

π2
log

1− ε
ε

)
log

πT

2
+ o

(
log

πT

2

)
.

This asymptotic result ensures theO(log(1
ε
) log(T )) dependence on ε and time-frequency

area T . Recently, Osipov [101] proved that

N (OAT ,B; [ε, 1]) ≤ T + C log(T )2 log(1/ε),

where C is a constant. Israel [69] provided a non-asymptotic bound on the number of

eigenvalues in the transition region. Fix η ∈ (0, 1/2]. Given ε ∈ (0, 1/2) and T ≥ 2,

then [69]

N (OAT ,B; (ε, 1− ε)) ≤ 2Cη

(
log

(
log T

ε

))1+η

log

(
T

ε

)
, (7.14)

where Cη is a constant dependent on η ∈ (0, 1
2
].

• The earliest result on the eigenvalue distribution of the discrete time-frequency lo-

calization operator (where G = Z, Ĝ = [−1
2
, 1

2
), AN = {0, 1, . . . , N − 1} and B =

[−W,W ] with W ∈ (0, 1
2
)) comes from Slepian [118], where it is shown that for any

b ∈ R, asymptotically the DPSS eigenvalue λ`(O(AN ,B)) → 1
1+eπb

as N → ∞ if

` = b2NW + b
π

logNc. This implies the asymptotic result:

N (OAN ,B; (ε, 1− ε)) ∼ 2

π2
logN log

(
1

ε
− 1

)
.

Recently, by examining the difference between the operator OAN ,B and the one formed

by a partial DFT matrix, we have shown in Corollary 3.1 the following nonasymptotic
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result characterizing the O(logN log 1
ε
) dependence:

N (OAN ,B; (ε, 1− ε)) ≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
. (7.15)

Theorem 3.2 also provides similar results for the eigenvalue distribution of discrete

periodic time-frequency localization operator with sets AM and B defined in (7.13):

N (OAM ,B; (ε, 1− ε))

≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
+ 4 max

− log
(
π
32

((
M
N

)2 − 1
)
ε
)

log
(
M
N

) , 0

 .

Remark 7.3. It is also of particular interest to have a finer result on the number of eigenvalues

that is greater than 1
2
since this together with the size of the transition region gives us a

complete understanding of the eigenvalue distribution.

• Landau [80] establishes the number of PSWF eigenvalues that are greater than 1
2
as

follows

λ(bT c−1)(OAT ,B) ≥ 1

2
≥ λ(dT e)(OAT ,B). (7.16)

• Theorem 5.2 provides a similar result for the DPSS eigenvalues.

In the following two subsections, we review some applications of Theorem 7.1.

7.3 Application: Communication

In [51], Franceschetti extended Landau’s theorem for simple time and frequency intervals

to other time and frequency sets of complicated shapes. Lim and Franceschetti [89] related

the number of degrees of freedom of the space of bandlimited signals to the deterministic

notions of capacity and entropy. Now we apply Theorem 7.1 to the effective dimensionality

of the bandlimited signals observed over a finite set A by utilizing the result in Section 7.1.
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To that end, we plug φ̂(ξ) = 1B(ξ) =

1, ξ ∈ B

0, ξ /∈ B
the indicator function on B into (7.1) and

get the following set of bandlimited functions observed only over A:

W(A, 1B(ξ)) :=

{
x ∈ L2(A) : x(g) =

∫
B
α(ξ)χξ(g) d ξ,

∫
|α(ξ)|2 ≤ 1, g ∈ A

}
.

When A ⊂ R2 represents a subset of time and space, the number of degrees of freedom

in the set W(A, 1B(ξ)) determines the total amount of information can be transmitted in

time and space by multiple-scattered electromagnetic waves [51]. Now we turn to compute

the effective dimensionality of the general set W(A, 1B(ξ)). In this case, |φ̂(ξ)|2 = 1B(ξ)

and the corresponding operator AA∗ defined in (7.4) is equivalent to the time-frequency

limiting operator OA,B in (7.6). Now Proposition 7.1 implies that the effective dimensionality

N (W(A, φ̂(ξ)), ε) is equal to the number of eigenvalues of OA,B that is greater than ε, which

is given by Theorem 7.1. In words, the effective dimensionality of the set W(A, 1B(ξ)) is

essentially |A||B|, and is insensitive to the level ε (as illustrated before, in many cases, this

dimensionality only has log(1
ε
) dependence on ε).

7.4 Application: Signal Representation

In addition to the eigenvalues of the time-frequency limiting operator TABBTA, the eigen-

functions TABBTA are also of significant importance, owing to their concentration in the time

and frequency domains. To see this, let u`(g) be the `-th eigenfunction of TABBTA, corre-

sponding to the `-th eigenvalue λ`(TABBTA). Denoting the Fourier transform of u`(g) by

û`(ξ), we have

∫
B
|û`(ξ)|2 d ξ = 〈TBFu`, TBFu`〉

=
〈
F−1TBFu`, u`

〉
=
〈
F−1TBFTAu`, TAu`

〉
=
〈
TAF−1TBFTAu`, TAu`

〉
= λ`(TABBTA)‖TAu`‖2,

(7.17)
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where the third line follows because u`(g) is a bandlimited signal (i.e., TA(u`) = u`), and

the last line utilizes TAF−1TBFTAu` = TABBTAu` = λ`(TABBTA)u`. In words, (7.17) states

that the eigenfunctions u` have λ`(TABBAA) proportion of energies within the band B, im-

plying that though the eigenfunctions are not exactly bandlimited, their Fourier transform is

mostly concentrated in the band B when λ`(TABBAA) is close to 1. Thus, the first ≈ |A||B|

eigenfunctions can be utilized as window functions for spectral estimation, and as a highly

efficient basis for representing bandlimited signals that are observed over a finite set A.

Recall that W(Aτ , 1B(ξ)) (defined in (7.1)) consists of bandlimited signals observed over

a finite set Aτ . Applying Proposition 7.1, we compute the n-width of the set W(Aτ , 1B(ξ))

as follows:

dn(W(Aτ , 1B(ξ))) =
√
λn(AA∗) =

√
λn(OAτ ,B).

By the definition of (7.3), we know for any x(g) ∈W(Aτ , 1B(ξ)),∫
Aτ
|x(g)− (PUnx)(g)|2 d g ≤

√
λn(OAτ ,B),

where Un is the subspace spanned by the first n eigenvectors of OAτ ,B, i.e.,

Un := span{u0(g), u1(g), . . . , un−1(g)}. (7.18)

Now we utilize Theorem 7.1 to conclude that the representation residual
√
λn(OAτ ,B) is very

small by choosing n ≈ |Aτ ||B|.

We now investigate the basis Un for representing time-limited version of characters χξ(g)

and bandlimited signals.

7.4.1 Approximation Quality for Time-Limited Version of Characters χξ(g)

We first restrict our focus to the simplest possible bandlimited signals that are observed

over a finite period: pure characters χξ(g) when g is limited to Aτ . Without knowing the

exact carrier frequency ξ in advance, we attempt to find an efficient low-dimensional basis

for capturing the energy in any signal χξ(g). To that end, we let Mn ∈ L2(Aτ ) denote an
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n-dimensional subspace of L2(Aτ ). We would like to minimize

∫
B
‖χξ − PMnχξ‖2

L2(Aτ ) d ξ. (7.19)

The following result establishes that the degree of approximation accuracy in a MSE sense

provided by the subspace Un for representing the time-limited version of characters χξ(g)

(where g is limited to Aτ ).

Theorem 7.2. For any n ∈ Z+, the optimal n-dimensional subspace which minimizes (7.19)

is Un. Furthermore, with this choice of subspace, we have

1

|B|

∫
B

‖χξ − PUnχξ‖2
L2(Aτ )

‖χξ‖2
L2(Aτ )

d ξ = 1−
∑n−1

`=0 λ`(OAτ ,B)

|Aτ ||B|
.

The proof of Theorem 7.2 is given in Appendix E.3. Combined with Theorem 7.1, Theo-

rem 7.2 implies that by choosing n ≈ |Aτ ||B|, in average the subspace spanned by the first n

eigenfunctions of TAτBBTAτ is expected to accurately represent time-limited characters within

the band of interest. We note that the representation guarantee for time-limited characters

{TAτχξ, ξ ∈ B} can also be used for most bandlimited signals that are observed over a finite

set Aτ . To see this, suppose x(g) is a bandlimited function which can be represented as

x(g) =

∫
B
x̂(ξ)χξ(g) d ξ.

An immediate consequence of the above equation is to view {TAτχξ, ξ ∈ B} as the atoms for

building TAτx:

TAτx =

∫
B
x̂(ξ)TAτχξ d ξ.

7.4.2 Approximation Quality for Random Bandlimited Signals

We can also approach the representation ability of the subspace Un (defined in (7.18))

from a probabilistic perspective.
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Theorem 7.3. Let x(g) = χξ(g), g ∈ Aτ be a random function where ξ is a random variable

with uniform distribution on B. Then we have

E
[
‖x− PUnx‖2

L2(Aτ )

]
E
[
‖x‖2

L2(Aτ )

] = 1−
∑n−1

`=0 λ`(OAτ ,B)

|Aτ ||B|
.

The proof of Theorem 7.3 is given in Appendix E.4. With this result, we are able to show

that in a certain sense, most bandlimited signals, when time-limited, are well-approximated

by a signal within the subspace Un. In particular, the following result establishes than the

bandlimited random processes, when time-limited, are in expectation well-approximated.

Corollary 7.1. Let x(g), g ∈ G be a zero-mean wide sense stationary random process over

the group G with power spectrum

Px(ξ) =

{ 1
|B| , ξ ∈ B,
0, otherwise.

Suppose we only observe x over the set Aτ . Then we have

E
[
‖x− PUnx‖2

L2(Aτ )

]
E
[
‖x‖2

L2(Aτ )

] = 1−
∑n−1

`=0 λ`(OAτ ,B)

|Aτ ||B|

The proof of Corollary (7.1) is given in Appendix E.5. As in our discussion following

Theorem 7.1, the term 1−
∑n−1
`=0 λ`(OAτ ,B)

|Aτ ||B| appearing in Theorems 7.3 and Corollary 7.1 can be

very small when we choose n slightly larger than |Aτ ||B|. This suggests that in a probabilistic

sense, most bandlimited functions, when time-limited, will be well-approximated by a small

number of the eigenfunctions of the operator OAτ ,B.

7.5 Applications in the Common Time and Frequency Domains

We now review several applications (that are not included in Chapters 3 and 4) involving

the time-frequency limiting operator OA,B in the common time and frequency domains, where

the eigenfunctions correspond to DPSS’s PSWF’s, and PDPSS’s.

It follows from (7.17) that, among all the functions that are time-limited to the set A,

the first eigenfuction u0(g) is maximally concentrated in the set B of the frequency domain.
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Motivated by this result, the first DPSS vector is utilized as a filter for super-resolution [47].

In [125], the first ≈ 2NW DPSS vectors are utilized as window functions (a.k.a. tapers) for

spectral estimation. The multitaper method [125] averages the tapered estimates with the

DPSS vectors, and has been used in a variety of scientific applications including statistical

signal analysis [27], geophysics and cosmology [28].

By exploiting the concentration behavior of the PSWF’s in the time and frequency do-

mains (where G = R and Ĝ = R), Xiao et al. [135] utilized the PSWF’s to numerically

construct quadratures, interpolation and differentiation formulae for bandlimited functions.

Gosse [53] constructed a PSWF dictionary consisting of the first few PSWF’s for recovering

smooth functions from random samples. The connection between time-frequency localization

of multiband signals and sampling theory for such signals is investigated in [70]. In [112, 113],

the authors also considered a PSWF dictionary for reconstruction of electroencephalography

(EEG) signals and time-limited signals that are also nearly bandlimited from nonuniform

samples. Chen and Vaidyanathan [23] utilized the PSWF’s to represent the clutter subspace

(and hence mitigate the clutter), facilitating space-time adaptive processing for multiple-

input multiple-output (MIMO) radar system; see also [138, 42].

We finally mention that the eigenvalue concentration behavior in Theorem 7.1 can also be

exploited for solving a linear system involving the Toeplitz operator OA,B: y = OA,Bx. Since

the operator OA,B has a mass of eigenvalues that are very close to 0, the system is often solved

by using the rank-K pseudoinverse of OA,B wherenK ≈ |A||B|. In the case when the Toeplitz

operator is the prolate matrix BN,W defined in (7.12), its truncated pseudoinverse is well

approximated as the sum of B∗N,W (which is equal to BN,W ) and a low-rank matrix [95, 75]

since most of the eigenvalues ofB∗N,W are either very close to 1 or 0. By utilizing the fact that

BN,W is a Toeplitz matrix and BN,Wx has a fast implementation via the FFT, Chapter 3

provides an efficient method for solving the system y = BN,Wx which appears in linear

prediction of bandlimited signals based on past samples and the Fourier extension.
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CHAPTER 8

CONCLUSIONS AND POSSIBLE FUTURE WORK

This thesis considers parameterized subspace model in which the signals of interest are

inherently low-dimensional and live in a union of subspaces, but the choice of subspace

is controlled by a small number of continuous-valued parameters. Specifically, our focus

has been constructing an appropriate basis (that matches the effective number of local de-

grees of freedom) to economically represent the signals of interest and developing rigorous,

theoretically-backed techniques for computing projections onto and orthogonal to these sub-

spaces. Our contributions in this thesis have included: new non-asymptotic results on the

eigenvalue distribution of (periodic) discrete time-frequency localization operators; fast con-

structions for computing approximate projections onto the leading Slepian basis elements; an

orthogonal approximate Slepian transform that has computational complexity comparable

to the FFT; results on the spectrum of combined time- and multiband-limiting operations in

the discrete-time domain and analysis for a dictionary formed by concatenating a collection

of modulated DPSS’s; analysis for the dimensionality of wall and target return subspaces

in through-the-wall radar imaging and algorithms for mitigating wall clutter and identify-

ing non-point targets; an asymptotic performance guarantee for the individual eigenvalue

estimates for Toeplitz matrices by circulant matrices; and the eigenvalue distribution of

time-frequency limiting operators on locally compact abelian groups. To conclude, we point

out some ongoing research as well as many possible future directions for this research.

8.1 On the Asymptotic Equivalence of Circulant and Toeplitz Matrices

In Chapter 6, we took the first step towards investigating conditions under which the

asymptotic equivalence of the matrices implies the individual asymptotic convergence of

the eigenvalues. In particular, our results suggest that instead of directly computing the

eigenvalues of a Toeplitz matrix, one can compute a fast spectrum approximation using the
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FFT. This is long known, but we provide new guarantees for the asymptotic convergence of

the individual eigenvalues.

However, the convergence rate O( 1
N

) (see Theorem 6.3) is only provided for band Toeplitz

matrices. A number of issues remain open regarding the convergence rate of the eigenvalues

between the general Toeplitz matrices and circulant matrices constructed in Chapter 6. For

instance, we suspect a similar convergence rate (O( 1
N

) or O( logN
N

)) holds under the assump-

tions of Theorem 6.2 (and even Theorem 6.4).

Another interesting question would be whether it is possible to extend our analysis to

general (non-Hermitian) Toeplitz matrices, along the lines of the Avram-Parter theorem [6,

103]. In addition, it would also be of interest to extend our analysis to the asymptotic

equivalence of block Toeplitz and block circulant matrices.

8.2 Time-Frequency Limiting Operators on Locally Compact Abelian Groups

In Chapter 7, we characterize the asymptotic behavior for the eigenvalues of the composite

time- and frequency-limiting operators on locally compact abelian groups. As inspired by

the applications listed in Section ??, we raise several questions concerning Theorems 7.1 and

7.2. Following the two remarks after Theorem 7.1, two natural questions are raised as follows:

(i) Can we improve the second term in (7.9)? Furthermore, what nonasymptotic result (like

(7.14) for the PSWF eigenvalues and (7.15) for the DPSS eigenvalues) can we obtain for the

number of eigenvalues of the Toeplitz operator OA,B within the transition region (ε, 1 − ε)?

(ii) Can we extend (7.16) to the general time-frequency limiting operator OA,B?

Other open theoretical questions concern the accuracy to which the subspace spanned

by the first n eigenfunctions of TABBTA can represent each individual time-limited character

TAχξ with ξ ∈ B. Theorem 7.2 ensures that accuracy is guaranteed in a MSE sense if

one chooses n ≈ |A||B| such that the sum of the remaining eigenvalues of G is small. We

suspect that a uniform guarantee for each TAχξ can also be obtained since the derivative of

‖χξ‖2
L2(A) is bounded, giving a finer result concerning the eigenvalue distribution for TABBTA.

In Chapter 4, we have a non-asymptotic guarantee for the DPSS basis in representing each
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complex exponential ef with frequency f inside a band of interest.

8.3 The General Framework in the Discrete Case

Inspired by the results in Chapters 3, 4 and 5 respectively for sampled bandlimited signals

and sampled multiband signals (see (2.5) in Section 2.4.2), we consider the general problem

of finding appropriate subspace that best approximates the data vector x drawn from a col-

lection of subspaces of CN parameterized by a small number of continuous-valued parameters.

The information content of such signals x is governed by the small number of continuous-

valued parameters. The desired subspace is to materialize the intrinsic information content

and facilitate the subsequent data processing tasks.

8.3.1 Formal Description

To begin, we let Sθ denote an L-dimensional subspace of CN parameterized by θ =

(θ1, θ2, . . . , θD) ∈ Θ, where Θ is the D-dimensional parameter space that governs our signal.

We let the matrix Ψθ ∈ CN×L denote any orthonormal basis17 for Sθ. Note that Ψθ can

be viewed as a matrix-valued function of θ. We assume Ψθ[n, l] is a continuously integrable

function of θ for all n ∈ [N ], l ∈ [L]. The signal of interest is generated as an integral of

vectors belonging to different subspaces Sθ

x =

∫
D⊂Θ

vθdθ where vθ = Ψθαθ ∈ Sθ, (8.1)

where D ⊂ Θ represents a possibly infinite set of parameter vectors and {αθ}θ∈Θ are the

length-L vector valued functions of coefficients corresponding to the bases {Sθ}θ∈Θ.

In many applications, D will have small measure, and we are interesting in several ques-

tions:

• what is an appropriate low-dimensional basis that best approximates all possible x

appearing in (8.1)?

• how do the dimensionality and basis functions change as a function of D?
17This condition maybe reduced to just basis.
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8.3.2 Potential Approach

In order to answer the questions posted above, similar to the approach in Section 7.1.2,

we may define an operator A : CN → L2(D,CL) as

[Au](θ) = ΨH
θ u, θ ∈ D,

where [Au](θ) is a vector valued function. Define the vector valued function aθ : RD → CL

via

aθ = [a0(θ) a1(θ) · · · aL−1(θ)]T ,

where al(θ) ∈ C is a function of θ for all l ∈ [L]. Here the normed linear space L2(D,CL)

consists of all vector valued functions aθ on the interval θ ∈ D with

‖a‖2
L2(D,CL) =

∫
D
‖aθ‖2

2dθ <∞.

Letting bθ ∈ L2(D,CL), we can also define the inner product in L2(D,CL) via

〈a, b〉L2(D,CL) =

∫
D
〈aθ, bθ〉 dθ =

∫
D
bHθ aθdθ.

The adjoint A∗ : L2(D,CL)→ CN can be expressed as

A∗a =

∫
D

Ψθaθ dθ.

Thus the signal model appearing in (8.1) equals x = A∗a. One can check that

〈Au,a〉L2(D,CL) =

∫
τ

aHθ 〈u,Ψθ〉dθ =

∫
τ

aHθ ΨH
θ udθ = 〈u,A∗a〉,

where the notation 〈·, ·〉, without subscript, denotes the conventional inner product on CN .

The self-adjoint operator A∗A : CN → CN is given by
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A∗Au =

∫
D

ΨθΨ
H
θ udθ =

∫
D

ΨθΨ
H
θ dθu = Bu (8.2)

with

B =

∫
D

ΨθΨ
H
θ dθ, (8.3)

which is equivalent to A∗A. We can show that B is the covariance matrix of a random

variable generated by picking θ uniformly from D, and thus investigating the operator A∗A

is equivalent to the conventional PCA approach. Similarly, we can define the operator AA∗

which is a Hilbert-Schmidt integral operator and has at most N non-zero eigenvalues. One

can check that A∗A and AA∗ have the same non-zero eigenvalues.

DPSS and DPSWF Revisited

Consider the example where D = [−W,W ] ⊂ Θ = [−1
2
, 1

2
] and L = 1, Ψθ[n] = ej2πn, n ∈

[N ]. The corresponding signal class consists of the sampled bandlimited signals as

x[n] =

∫
D
αθe

j2πθndθ.

The operator A : CN → L2(D) becomes

[Au](θ) =
N−1∑
n=0

e−j2πθnu[n], θ ∈ D.

In words, the operator A is equivalent to taking a vector in CN , computing its DTFT and

truncating the DTFT to D. The adjoint operator A∗ : L2(D) → CN acts on a function

supported on D, computing its inverse DTFT (IDTFT), and then time-limiting the IDTFT

to [N ] as

[A∗aθ][n] =

∫
D
aθe

j2πθndθ, n ∈ [N ].

We then obtain the self-adjoint operator A∗A : CN → CN
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A∗Au = BN,Wu

where BN,W is the prolate matrix defined in (2.16) (and also (2.11)). The operator A∗A is

equivalent to the composite of time- and band-limiting operators in Section 2.5. Thus the

eigenfunctions of A∗A are the DPSS’s.

In a nutshell, the number of large eigenvalues of A∗A tells the effective dimensionality

of such signals x modelled in (8.1). The eigenfunctions (or eigenvectors) of A∗A corre-

sponding to the significant eigenvalues give us an orthobasis for the class signal x appearing

in (8.1). Thus, to answer the questions posted in Section 8.3.1, we can turn to investigate

the eigenvalues of either A∗A or AA∗. In some cases a closed form expression for matrix

B may be available; in other cases this matrix may be computable (e.g., via integration of∫
D ΨθΨ

H
θ dθ). Numerical integration for

∫
D ΨθΨ

H
θ dθ can be obtained by uniformly sampling

θ over D (for smoothness class of integrands) and by randomly sampling θ over D (for compli-

cated integrands). Once the matrix B is a Toeplitz matrix, we can utilize the fast estimates

developed in Chapter 6 for estimating the eigenvalues of B. However, a number of theoreti-

cal questions still remain open concerning the eigenvalue distribution for the operators A∗A

or AA∗, like Corollary 3.1, Theorem 5.3 and Theorem 7.1 for the eigenvalue distribution of

the time-frequency limiting operators.
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APPENDIX A

PROOFS FOR CHAPTER 3

This appendix mainly includes the proofs for Chapter 3.

A.1 Proof of Theorem 3.1

Our goal is to show that BN,W −FN,WF ∗N,W is well-approximated as a factored low rank

matrix. To do this, we will express BN,W − FN,WF ∗N,W in terms of other matrices, whose

entries also have a closed form. We will then derive a factored low rank approximation for

each of these other matrices. Finally, we will combine these low rank approximations to get

a factored low rank approximation for BN,W − FN,WF ∗N,W .

Towards this end, we define DA to be the N ×N diagonal matrix with diagonal entries

DA[n, n] = ej2πW
′n for n = 0, . . . , N − 1 and define A0 to be the N ×N matrix with entries

A0[m,n] =


1

π(m−n)
− 1

N sin
(
π
m−n
N

) if m 6= n,

0 if m = n.

We also define DB to be the N × N diagonal matrix with diagonal entries DB[n, n] =

ej(W+W ′)n for n = 0, . . . , N − 1 and define B0 to be the N ×N matrix with entries

B0[m,n] =
2 sin(π(W +W ′)(m− n))

π(m− n)
.

Note that with these definitions, we can write the (m,n)-th entry of BN,W − FN,WF ∗N,W as
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[BN,W − FN,WF ∗N,W ][m,n]

=
sin(2πW (m− n))

π(m− n)
− sin(2πW ′(m− n))

N sin(πm−n
N

)

=
sin(2πW (m− n))

π(m− n)
− sin(2πW ′(m− n))

π(m− n)
+

sin(2πW ′(m− n))

π(m− n)
− sin(2πW ′(m− n))

N sin(πm−n
N

)

=
2 sin(π(W −W ′)(m− n)) cos(π(W +W ′)(m− n))

π(m− n)

+
sin(2πW ′(m− n))

π(m− n)
− sin(2πW ′(m− n))

N sin(πm−n
N

)

= B0[m,n] cos(π(W +W ′)(m− n)) +A0[m,n] sin(2πW ′(m− n))

=

[
1

2
DBB0D

∗
B +

1

2
D∗BB0DB +

1

2j
DAA0D

∗
A −

1

2j
D∗AA0DA

]
[m,n].

Hence,

BN,W − FN,WF ∗N,W =
1

2j
DAA0D

∗
A −

1

2j
D∗AA0DA +

1

2
DBB0D

∗
B +

1

2
D∗BB0DB. (A.1)

Thus, we can find a low-rank approximation for BN,W − FN,WF ∗N,W by finding low-rank

approximations for A0 and B0. In order to do so, it is useful to consider the N ×N matrix

A1 defined by

A1[m,n] =

{
A0[m,n]− 1

π(m−n+N)
− 1

π(m−n−N)
if m 6= n,

0 if m = n.

Next, we let H denote the Hilbert matrix, i.e., the N ×N matrix with entries

H [m,n] =
1

m+ n+ 1
,

and let J be the N ×N matrix with 1’s along the antidiagonal and zeros elsewhere. (Note

that for an arbitrary N × N matrix X, JX is simply X flipped vertically and XJ is X

flipped horizontally.) Using these definitions, we can write A0 as

A0 =
1

π
(HJ − JH) +A1. (A.2)

By combining (A.1) and (A.2), we get
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BN,W − FN,WF ∗N,W = 1
2j
DA

[
1
π
(HJ − JH) +A1

]
D∗A − 1

2j
D∗A

[
1
π
(HJ − JH) +A1

]
DA

+ 1
2
DBB0D

∗
B + 1

2
D∗BB0DB.

(A.3)

We next proceed by controlling the rank of H , A1, and B0 separately.

Controlling the rank of H

Our goal is to construct a low-rank matrix H̃ = ZZ∗ such that ‖H−H̃‖ ≤ δH for some

desired δH > 0. We will do this via Lemma A.1, which we prove in Section A.6.

Lemma A.1. Let A be an N ×N symmetric positive definite matrix with condition number

κ, let B be an arbitrary N ×M matrix with M ≤ N , and let X be the N × N positive

definite solution to the Lyapunov equation

AX +XA∗ = BB∗.

Then for any δ ∈ (0, 1], there exists an N × rM matrix Z with

r =

⌈
1

π2
log (4κ) log

(
4

δ

)⌉
, (A.4)

such that

‖X −ZZ∗‖ ≤ δ‖X‖. (A.5)

Now, we let A be the N × N diagonal matrix defined by A[n, n] = n + 1
2
for n =

0, . . . , N − 1, and let B ∈ RN be a vector of all ones. It is easy to verify that the positive

definite solutionX to AX+XA∗ = BB∗ is simplyX = H . The minimum and maximum

eigenvalues of A are λmin(A) = 1
2
and λmax(A) = N − 1

2
, and thus the condition number for

A is κ = 2N − 1. Thus, by applying Lemma A.1 with δ = δH
π
, we can construct an N ×RH

matrix Z with

RH =

⌈
1

π2
log(8N − 4) log

(
4π

δH

)⌉
such that
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‖H −ZZ∗‖ ≤ δH
π
‖H‖.

It is shown in [109] that the operator norm of the infinite Hilbert matrix is bounded above by

π, and thus, the finite dimensional matrixH satisfies ‖H‖ ≤ π. Therefore, ‖H−ZZ∗‖ ≤ δH ,

as desired.

Controlling the rank of A1

Next, we construct a low-rank matrix Ã1 such that ‖A1 − Ã1‖ ≤ δA for some desired

δA > 0. In this case we will require a different approach. We begin by noting that by using

the Taylor series expansions 18

1

sin πx
− 1

πx
=

2

π

∞∑
k=1

(1− 2−(2k−1))ζ(2k)x2k−1,

and

1

π(x+ 1)
+

1

π(x− 1)
= − 2x

π(1− x2)
= − 2

π

∞∑
k=1

x2k−1,

we can write

A1[m,n] =
1

π(m− n)
− 1

N sin
(
πm−n

N

) − 1

π(m− n+N)
− 1

π(m− n−N)

=
2

Nπ

∞∑
k=1

[
1− (1− 2−(2k−1))ζ(2k)

](m− n
N

)2k−1

.

We can then define a new N ×N matrix Ã1 by truncating the series to RA terms:

Ã1[m,n] :=
2

Nπ

RA∑
k=1

[
1− (1− 2−(2k−1))ζ(2k)

](m− n
N

)2k−1

.

Note that each entry of Ã1 is a polynomial of degree 2RA − 1 in both m and n. Thus, we

could also write

Ã1[m,n] =

2RA−1∑
k=0

2RA−1∑
`=0

ck,`m
kn`,

18Here, ζ(s) :=
∑∞
n=1 n

−s is the Riemann-Zeta function.
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for a set of scalars ck,` ∈ R. If we let VA be the N × 2RA matrix with entries VA[m, k] = mk

and let CA be the 2RA × 2RA matrix with entries CA[k, `] = ck,`, it is easy to see that we

can write Ã1 = VACAV
∗
A . Thus, Ã1 has rank 2RA.

Next, we note that by using the identity (1−21−s)ζ(s) =
∑∞

n=1
(−1)n+1

ns
for s > 1, we have

0 ≤ 1− (1− 2−(2k−1))ζ(2k) =
∞∑
n=2

(−1)n

n2k
≤ 1

22k
,

where the inequality follows from the fact that this is an alternating series whose terms

decrease in magnitude. Hence, we can bound the truncation error |A1[m,n]− Ã1[m,n]| by

|A1[m,n]− Ã1[m,n]| =

∣∣∣∣∣ 2

Nπ

∞∑
k=RA+1

[
1− (1− 2−(2k−1))ζ(2k)

](m− n
N

)2k−1
∣∣∣∣∣

≤ 2

Nπ

∞∑
k=RA+1

[
1− (1− 2−(2k−1))ζ(2k)

] ∣∣∣∣m− nN

∣∣∣∣2k−1

≤ 2

Nπ

∞∑
k=RA+1

1

22k
· 1

=
2

3Nπ

(
1

2

)2RA

.

Therefore, the error ‖A1 − Ã1‖2
F is bounded by:

‖A1 − Ã1‖2
F =

N−1∑
m=0

N−1∑
n=0

|A1[m,n]− Ã1[m,n]|2 ≤ N ·N ·

[
2

3Nπ

(
1

2

)2RA
]2

=
4

9π2

(
1

2

)4RA

.

Hence,

‖A1 − Ã1‖ ≤ ‖A1 − Ã1‖F ≤
2

3π

(
1

2

)2RA

.

Thus, for any δA ∈ (0, 8
3π

) we can set RA =
⌈

1
2 log 2

log
(

2
3πδA

)⌉
and ensure that ‖A1− Ã1‖ ≤

δA and

rank(Ã1) ≤ 2

⌈
1

2 log 2
log

(
2

3πδA

)⌉
.

Controlling the rank of B0
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To construct a low-rank matrix B̃0 such that ‖B0 − B̃0‖ ≤ δB for some desired δB > 0,

we use a similar approach as above. Using the Taylor series

sinx =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
,

we can write

B0[m,n] =
2 sin(π(W −W ′)(m− n))

π(m− n)

=
∞∑
k=0

2(−1)k[π(W −W ′)(m− n)]2k+1

(2k + 1)!π(m− n)

=
2

Nπ

∞∑
k=0

(−1)k[π(W −W ′)N ]2k+1

(2k + 1)!

(
m− n
N

)2k

.

We can then define a new matrix B̃0 by truncating the series to RB terms:

B̃0[m,n] :=
2

Nπ

RB−1∑
k=0

(−1)k[π(W −W ′)N ]2k+1

(2k + 1)!

(
m− n
N

)2k

.

Note that each entry of B̃0 is a polynomial of degree 2RB − 2 in both m and n. Thus, we

could also write

B̃0[m,n] =

2RB−2∑
k=0

2RB−2∑
`=0

c′k,`m
kn`,

for a set of scalars c′k,` ∈ R. If we let VB be the N × (2RB − 1) matrix with entries

VB[m, k] = mk and let CB be the (2RB − 1)× (2RB − 1) matrix with entries CB[k, `] = c′k,`,

it is easy to see that we can write B̃0 = VBCBV
∗
B . Thus, B̃0 has rank 2RB − 1.

Next, we note that by definition, 2W ′N is 2WN rounded to the nearest odd integer.

Hence, |2W ′N−2WN | ≤ 1, and so, |π(W−W ′)N | ≤ π
2
. Also, we have that (2k+1)! ≥ 2

9
·32k+1

for all integers k ≥ 0. Hence, the truncation error |B0[m,n]− B̃0[m,n]| is bounded by:
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|B0[m,n]− B̃0[m,n]| ≤

∣∣∣∣∣ 2

Nπ

∞∑
k=RB

(−1)k[π(W −W ′)N ]2k+1

(2k + 1)!

(
m− n
N

)2k
∣∣∣∣∣

≤ 2

Nπ

∣∣∣∣∣(−1)RB [π(W −W ′)N ]2rb+1

(2K + 1)!

(
m− n
N

)2K
∣∣∣∣∣

≤ 2

Nπ

(
π
2

)2RB+1

2
9
· 32RB+1

· 1

=
3

2N

(π
6

)2RB
,

where we have used the fact that an alternating series whose terms decrease in magnitude

can be bounded by the magnitude of the first term. Thus, the error ‖B0− B̃0‖2
F is bounded

by:

‖B0 − B̃0‖2
F =

N−1∑
m=0

N−1∑
n=0

|B0[m,n]− B̃0[m,n]|2 ≤ N ·N ·
[

3

2N

(π
6

)2RB
]2

=
9

4

(π
6

)4RB
.

Hence,

‖B0 − B̃0‖ ≤ ‖B0 − B̃0‖F ≤
3

2

(π
6

)2RB
.

Thus, for any δB ∈ (0, 3
2
) we can set RB =

⌈
1

2 log
6
π

log
(

3
2δB

)⌉
and ensure that ‖B0−B̃0‖ ≤ δB

and

rank(B̃0) ≤ 2

⌈
1

2 log 6
π

log

(
3

2δB

)⌉
− 1.

Putting it all together

For any ε ∈ (0, 1
2
), set19 δH = 4π

15
ε and δA = δB = 7

30
ε. Then, let H̃ = ZZ∗, Ã1 =

VACAV
∗
A , and B̃0 = VBCBV

∗
B be defined as in the previous subsections. Also, define

EH = H − H̃ , EA = A1− Ã1, EB = B0− B̃0. By using these definitions along with (A.3),

we can write

BN,W − FN,WF ∗N,W = L+EF ,

19It may be possible to obtain a slightly better bound via a more careful selection of δA, δB , and δH . We
have not pursued such refinements here as there is not much room for significant improvement.
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where

L = 1
2j
DA

[
1
π
(H̃J − JH̃) + Ã1

]
D∗A − 1

2j
D∗A

[
1
π
(H̃J − JH̃) + Ã1

]
DA

+ 1
2
DBB̃0D

∗
B + 1

2
D∗BB̃0DB

= 1
2πj

(DAZZ
∗JD∗A −DAJZZ

∗D∗A −D∗AZZ∗JDA −D∗AJZZ∗DA)

+ 1
2j

(DAVACAV
∗
AD

∗
A −D∗AVACAV

∗
ADA) + 1

2
(DBVBCBV

∗
BD

∗
B +D∗BVBCBV

∗
BDB)

and

EF = 1
2j
DA

[
1
π
(EHJ − JEH) +EA

]
D∗A − 1

2j
D∗A

[
1
π
(EHJ − JEH) +EA

]
DA

+ 1
2
DBEBD

∗
B + 1

2
D∗BEBDB.

If we define

L1 =[
1

2πj
DAZ − 1

2πj
DAJZ − 1

2πj
D∗AZ

1
2πj
D∗AJZ

1
2j
DAVA − 1

2j
D∗AVA

1
2
DBVB

1
2
D∗BVB

]
and

L2 =

[
DAJZ DAZ D∗AJZ D∗AZ DAVAC

∗
A D∗AVAC

∗
A DBVBC

∗
B D∗BVBC

∗
B

]
,

then L = L1L
∗
2 and L1,L2 are both N ×RL matrices, where

RL = 4 ·RH + 2 · 2RA + 2 · (2RB − 1)

= 4

⌈
1

π2
log(8N − 4) log

(
4π

δH

)⌉
+ 4

⌈
1

2 log 2
log

(
2

3πδA

)⌉
+ 4

⌈
1

2 log 6
π

log

(
3

2δB

)⌉
− 2

≤ 4

π2
log(8N − 4) log

(
4π

δH

)
+

2

log 2
log

(
2

3πδA

)
+

2

log 6
π

log

(
3

2δB

)
+ 10

=
4

π2
log(8N − 4) log

(
15

ε

)
+

2

log 2
log

(
20

7πε

)
+

2

log 6
π

log

(
45

7ε

)
+ 10

=

(
4

π2
log(8N − 4) +

2

log 2
+

2

log 6
π

)
log

(
15

ε

)
+

2

log 2
log

(
4

21π

)
+

2

log 6
π

log

(
3

7

)
+ 10

≤
(

4

π2
log(8N) + 6

)
log

(
15

ε

)
.
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Also, by applying the triangle inequality and using the fact that ‖DA‖ = ‖DB‖ = ‖J‖ = 1,

we see that

‖EF‖ ≤
2

π
‖EH‖+ ‖EA‖+ ‖EB‖ ≤

2

π
δH + δA + δB =

2

π
· 4πε

15
+

7ε

30
+

7ε

30
= ε.

Together, these two facts establish the theorem.

A.2 Proof of Corollary 3.1

Corollary 3.1 is a direct consequence of Theorem 3.1 together with the following lemma.

Lemma A.2. Let A be an N × N Hermitian matrix with eigenvalues λ(0) ≥ · · · ≥ λ(N−1).

Suppose we can write

A = UU ∗ +L+E,

where U is an N×K matrix with orthonormal columns (U ∗U = I), L is an N×N Hermitian

matrix with rank(L) = r, and E is an N ×N Hermitian matrix with ‖E‖ ≤ ε. Then

#{` : ε < λ(`) < 1− ε} ≤ 2r.

Proof. Define S1 = Null(UU ∗) ∩ Null(L) and d1 = dim(S1). For any x ∈ S1 with ‖x‖2 = 1,

x∗Ax = x∗Ex ≤ ‖E‖ ≤ ε.

Then by the Courant-Fischer-Weyl min-max theorem,

λ(N−d1) = min
subspaces S
dim(S)=d1

 max
x∈S
‖x‖2=1

x∗Ax

 ≤ max
x∈S1
‖x‖2=1

x∗Ax ≤ ε.

Similarly, let S2 = Null(I −UU ∗) ∩ Null(L) and d2 = dim(S2). Then, for any x ∈ S2 with

‖x‖2 = 1,

x∗(I−A)x = −x∗Ex ≤ ‖E‖ ≤ ε.

Since the eigenvalues of I−A are 1− λ(N−1) ≥ · · · ≥ 1− λ(0), the min-max theorem tells us

1− λ(d2−1) = min
subspaces S
dim(S)=d2

 max
x∈S
‖x‖2=1

x∗(I−A)x

 ≤ max
x∈S2
‖x‖2=1

x∗(I−A)x ≤ ε,
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meaning λ(d2−1) ≥ 1− ε. Thus

#{` : ε < λ(`) < 1− ε} ≤ N − d1 − d2.

Since for any two N ×N matrices M1,M2

dim(Null(M1) ∩ Null(M2)) ≥ N − (dim(Range(M1)) + dim(Range(M2))),

we know d1 ≥ N − (K + r) and d2 ≥ N − (N −K + r). Thus,

#{` : ε < λ(`) < 1− ε} ≤ 2r.

A.3 Proof of Corollary 3.2

Corollary 3.2 is a direct consequence of Corollary 3.1 together with the following lemma.

Lemma A.3. Let A be an N × N symmetric matrix with eigenvalues 1 ≥ λ(0) ≥ · · · ≥

λ(N−1) ≥ 0 and corresponding eigenvectors v0, . . . ,vN−1. Fix ε ∈ (0, 1
2
), and let

r′ = #{` : ε < λ(`) < 1− ε}.

Choose K such that λ(K−1) > ε and λ(K) < 1 − ε, and set V[K] =

[
v0 · · · vK−1

]
. Then

there exists N × r′ matrices U1,U2 and an N ×N matrix E with ‖E‖ ≤ ε such that

V[K]V
∗

[K] = A+U1U
∗
2 +E.

Proof. First, we partition the eigenvalues of A into four sets:

I1 = {` : λ(`) ≥ 1− ε}, I2 = {` : ` < K, ε < λ(`) < 1− ε},
I3 = {` : ` ≥ K, ε < λ(`) < 1− ε}, I4 = {` : λ(`) ≤ ε}.

We can write

A = V1Λ1V
∗

1 + V2Λ2V
∗

2 + V3Λ3V
∗

3 + V4Λ4V
∗

4

and
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V[K]V
∗

[K] = V1V
∗

1 + V2V
∗

2 ,

where the Vi contain the eigenvectors from Ii as their columns, and the Λi are diagonal

containing the corresponding eigenvalues. Thus,

V[K]V
∗

[K] −A = [V2(I−Λ2)V ∗2 − V3Λ3V
∗

3 ] + [V1(I−Λ1)V ∗1 − V4Λ4V
∗

4 ]

=: U1U
∗
2 +E,

where

U1 =

[
V2(I−Λ2)1/2 −V3Λ

1/2
3

]
,

U2 =

[
V2(I−Λ2)1/2 V3Λ

1/2
3

]
,

E =

[
V1 V4

]I−Λ1 0

0 −Λ4


V ∗1
V ∗4

 .
Notice that the number of columns in both U1 and U2 is the same as the size of I2∪I3, which

is exactly r′. Also, since both ‖I − Λ1‖ ≤ ε and ‖Λ4‖ ≤ ε, and
[
V1 V4

]
has orthonormal

columns, we have ‖E‖ ≤ ε.

A.4 Proof of Corollary 3.3

Corollary 3.3 is a direct consequence of Corollary 3.1 together with the following lemma.

Lemma A.4. Let A be an N × N symmetric matrix with eigenvalues 1 ≥ λ(0) ≥ · · · ≥

λ(N−1) ≥ 0 and corresponding eigenvectors v0, . . . ,vN−1. Fix ε ∈ (0, 1
2
), and let

r = #{` : ε < λ(`) < 1− ε}.

Choose K such that λ(K−1) > ε and λ(K) < 1 − ε. Let V[K] =

[
v0 · · · vK−1

]
and Λ[K] =

diag(λ(0), . . . , λ(K−1)). Define A†K = V[K]Λ
−1
[K]V[K] to be the rank-K truncated pseudoinverse

of A. Then there exists N × r matrices U3,U4 and an N ×N matrix E with ‖E‖ ≤ 3ε such

that

149



A†K = A+U3U
∗
4 +E.

Proof. We partition the eigenvalues of A into four sets:

I1 = {` : λ(`) ≥ 1− ε}, I2 = {` : ` < K, ε < λ(`) < 1− ε},
I3 = {` : ` ≥ K, ε < λ(`) < 1− ε}, I4 = {` : λ(`) ≤ ε}.

We can write

A = V1Λ1V
∗

1 + V2Λ2V
∗

2 + V3Λ3V
∗

3 + V4Λ4V
∗

4 ,

and

A†K = V1Λ
−1
1 V

∗
1 + V2Λ

−1
2 V

∗
2

where the Vi contain the eigenvectors from Ii as their columns, and the Λi are diagonal

containing the corresponding eigenvalues. Thus,

A†K −A =
[
V2(Λ−1

2 −Λ2)V ∗2 − V3Λ3V
∗

3

]
+
[
V1(Λ−1

1 −Λ1)V ∗1 − V4Λ4V
∗

4

]
=: U3U

∗
4 +E,

where

U3 =

[
V2(Λ−1

2 −Λ2)1/2 −V3Λ
1/2
3

]
,

U4 =

[
V2(Λ−1

2 −Λ2)1/2 V3Λ
1/2
3

]
,

E =

[
V1 V4

]Λ−1
1 −Λ1 0

0 −Λ4


V ∗1
V ∗4

 .
Notice that the number of columns in both U3 and U4 is the same as the size of I2 ∪ I3,

which is exactly r. Also, since ‖Λ−1
1 − Λ1‖ ≤ 1

1−ε − (1 − ε) = ε
1−ε + ε ≤ 3ε and ‖Λ4‖ ≤ ε,

and
[
V1 V4

]
has orthonormal columns, we have ‖E‖ ≤ 3ε.
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A.5 Proof of Corollary 3.4

Corollary 3.4 is a direct consequence of Corollary 3.1 together with the following lemma.

Lemma A.5. Let A be an N×N symmetric matrix with eigenvalues 1 ≥ λ0 ≥ · · · ≥ λN−1 ≥

0 and corresponding eigenvectors v0, . . . ,vN−1. For a given regularization parameter α > 0,

define Atik = (A∗A+ αI)−1A∗. Fix ε ∈ (0, 1
2
) and let

r = #{` : α(1 + α)ε < λ` < 1− 1
3
ε}.

Then there exists an N × r matrix U5 and an N ×N matrix E with ‖E‖ ≤ ε such that

Atik =
1

1 + α
A+U5U

∗
5 +E.

Proof. We partition the eigenvalues of A into two sets:

I1 = {` : α(1 + α)ε < λ` < 1− 1
3
ε}, I2 = {` : λ` ≤ α(1 + α)ε or λ` ≥ 1− 1

3
ε}.

We can write

A = V1Λ1V
∗

1 + V2Λ2V
∗

2

and

Atik = V1(Λ2
1 + αI)−1Λ1V

∗
1 + V2(Λ2

2 + αI)−1Λ2V
∗

2 ,

where the Vi contain the eigenvectors from Ii as their columns, and the Λi are diagonal

containing the corresponding eigenvalues. Thus,

Atik − 1
1+α
A = V1

[
(Λ2

1 + αI)−1Λ1 − 1
1+α

Λ1

]
V ∗1 + V2

[
(Λ2

2 + αI)−1Λ2 − 1
1+α

Λ2

]
V ∗2

=: U5U
∗
5 +E,

where

U5 = V1

[
(Λ2

1 + αI)−1Λ1 − 1
1+α

Λ1

]1/2
,
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E = V2

[
(Λ2

2 + αI)−1Λ2 − 1
1+α

Λ2

]
V ∗2 .

Notice that the number of columns in U5 is the same as the size of I1, which is exactly r.

Observe that the matrix (Λ2
2 + αI)−1Λ2 − 1

1+α
Λ2 is diagonal, and the diagonal entries

are of the form λ`
λ2
`+α
− λ`

1+α
=

λ`(1−λ2
` )

(1+α)(λ2
`+α)

where λ` satisfies either 0 ≤ λ` ≤ α(1 + α)ε or

1− 1
3
ε ≤ λ` ≤ 1. If λ` ≤ α(1 + α)ε, then we have:

0 ≤ λ`(1− λ2
`)

(1 + α)(λ2
` + α)

≤ α(1 + α)ε · 1
(1 + α)α

= ε.

If 1− 1
3
ε ≤ λ` ≤ 1, then since 0 < ε < 1

2
, we also have λ` ≥ 1− 1

3
ε ≥ 5

6
, and thus:

0 ≤ λ`(1− λ2
`)

(1 + α)(λ2
` + α)

=
λ`(1 + λ`)(1− λ`)
(1 + α)(λ2

` + α)
≤

1 · 2 · 1
3
ε

1 · (5
6
)2

=
24

25
ε ≤ ε.

In either case, 0 ≤ λ`(1−λ2
` )

(1+α)(λ2
`+α)

≤ ε. Hence, ‖(Λ2
2 + αI)−1Λ2 − 1

1+α
Λ2‖ ≤ ε, and thus

‖E‖ ≤ ε.

A.6 Proof of Lemma A.1

Iterative methods for efficiently computing a low-rank approximation to the solution of a

Lyapunov system have been well-studied [90, 134]. The CF-ADI algorithm presented in [88]

constructs a factor Z by concatenating a series of r N×M matrices, Z =

[
Z1 Z2 · · · Zr

]
,

where

Z1 =
√

2p1(A+ p1I)−1B

Zk =

√
pk
pk−1

(
I− (pk + pk−1)(A+ pkI)−1

)
Zk−1, k = 2, . . . , r,

for some choice of positive real numbers p1, . . . , pr. They show that the matrix ZZ∗ produced

by this iteration is equivalant to the matrix produced by the ADI iteration given in [90], and

thus, ZZ∗ satisfies
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X −ZZ∗ = φ(A)Xφ(A)∗ where φ(x) =
r∏
j=1

x− pj
x+ pj

.

(This is shown in [90] by using induction on r.) Therefore, the error ‖X −ZZ∗‖ satisfies

‖X −ZZ∗‖ ≤ ‖X‖ · ‖φ(A)‖2 = ‖X‖ · max
x∈Spec(A)

|φ(x)|2 ≤ ‖X‖ · max
x∈[a,b]

|φ(x)|2,

where a = λmin(A) and b = λmax(A) (so κ = b
a
). In [134], it is shown that for a given interval

[a, b] and a number of ADI iterations r, there exists a choice of parameters p1, . . . , pr such

that maxx∈[a,b] |φ(x)|2 = α, where α satisfies

I(
√

1− α2)

I(α)
=

4rI(κ−1)

I(
√

1− κ−2)
,

where I(τ) is the complete elliptic integral of the first kind, defined by

I(τ) :=

∫ π/2

0

(1− τ 2 sin2 θ)−1/2 dθ.

It is shown in [85] that the elliptic nome, defined as

q(τ) := exp

[
−πI(

√
1− τ 2)

I(τ)

]
satisfies

τ 2 = 16q(τ)
∞∏
n=1

(
1 + q(τ)2n

1 + q(τ)2n−1

)8

.

For 0 ≤ τ ≤ 1, the range of the elliptic nome is 0 ≤ q(τ) ≤ 1. Hence, the above equation gives

us the inequality τ 2 ≤ 16q(τ). By using the definition of the elliptic nome, this inequality

becomes

I(
√

1− τ 2)

I(τ)
≤ 2

π
log

4

τ
for 0 ≤ τ ≤ 1.

So, by setting the number of iterations as r =
⌈

1
π2 log (4κ) log

(
4
δ

)⌉
, we have

2

π
log

4

α
≥ I(

√
1− α2)

I(α)
=

4rI(κ−1)

I(
√

1− κ−2)
≥

4 · 1
π2 log(4κ) log(4

δ
)

2
π

log(4κ)
=

2

π
log

4

δ
.

Hence, maxx∈[a,b] |φ(x)|2 = α ≤ δ, and thus, ‖X −ZZ∗‖ ≤ δ‖X‖, as desired.
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Remark A.1. It is shown in [90] that (A.4) is a good approximation for the number of

iterations needed to get the relative error less than δ, provided that κ � 1. It is shown in

[134] that (A.4) is a good approximation provided that r ≥ 3. Here, we have shown that

(A.4) is sufficient to guarantee a strict bound on the error.

Remark A.2. The choice of parameters p1, . . . , pr which minimizes maxx∈[a,b] |φ(x)|2 is given

by the formula pk = bdn
[

2k−1
2r
I(
√

1− κ−2),
√

1− κ−2
]
, where dn[z, τ ] is the Jacobi elliptic

function. This function is defined as dn[z, τ ] =
√

1− τ 2 sin2 ϕ, where ϕ satisfies
∫ ϕ

0
(1 −

τ 2 sin2 θ)−1/2 dθ = z. If the Jacobi elliptic function dn is not available, a suboptimal choice

of parameters p1, . . . , pr is given by pk = a
2k−1

2r b
2r−2k+1

2r , i.e., we can pick the parameters to

be evenly spaced on a log scale.

Remark A.3. If the matrix A is diagonal, each iteration of the CF-ADI algorithm above will

take O(N) operations. Hence, the matrix Z can be computed in O(rN) operations.

A.7 Proof of Theorem 3.2

Theorem 3.1 implies that the difference between BN,W and FN,WF ∗N,W is effectively low

rank. The main idea is to first show that the difference between the two prolate matrices

BN,W and [BM,W ]N is also effectively low rank. By using the Taylor series

1

sinx
− 1

x
=
∞∑
r=1

2(1− 2−(2r−1))ζ(2r)

π2r
x2r−1,

where ζ denotes the Riemann-Zeta function, the (m,n)-th entry of the difference [BM,W ]N −

BN,W is given by

(
[BM,W ]N −BN,W

)
[m,n]

=
sin (2πW (m− n))

M sin ((m− n)π/M)
− sin (2πW (m− n))

π(m− n)

=

 1

sin
(

(m−n)π
M

) − 1
(m−n)π
M

 sin (2πW (m− n))

M

=
∞∑
r=1

t(r;m− n) = L2[m,n] +E2[m,n]
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for all m,n = 0, 1, . . . , N − 1. Here t(r; k) := 2
Mπ

(1− 21−2r) ζ(2r)
(
k
M

)2r−1
sin (2πWk), and

L2 and E2 are N ×N matrices with entries

L2[m,n] =
R∑
r=1

t(r;m− n), E2[m,n] =
∞∑

r=R+1

t(r;m− n).

Define D ∈ R2R×2R to have entries

D[2r − 1− p, p] =
2

Mπ

(
1− 2−(2r−1)

)
ζ(2r)(−1)p

(
2r − 1

p

)
for 1 ≤ r ≤ R and 0 ≤ p ≤ 2r − 1, and zeros for the remaining entries. Also define

U ,V ∈ RN×2R such that

U [n, r] =
( n
M

)r
sin (2πWn) , V [n, r] =

( n
M

)r
cos (2πWn)

for all 0 ≤ r ≤ 2R− 1 and 0 ≤ n ≤ N − 1. The rank of L2 then can be identified by noting

that

L2[m,n] =
R∑
r=1

2r−1∑
p=0

D[2r − 1− p, p]
(m
M

)2r−1−p ( n
M

)p
·

(sin (2πWm) cos (2πWn)− cos (2πWm) sin (2πWn))

=
R∑
r=1

2r−1∑
p=0

D[2r − 1− p, p]
(
U [m, 2r − 1− p]V [n, p]

− V [m, 2r − 1− p]U [n, p]
)

= (UDV ∗) [m,n]− (V DU ∗) [m,n].

This implies L2 = UDV ∗ − V DU ∗ and rank(L2) ≤ 4R.

Also note that 1 − 21−sζ(s) = η(s) is the Dirichlet eta function satisfying 0 < η(s) =∑∞
n=1

(−1)n−1

ns
< 1 for all s ≥ 1. We now turn to bound the entries in E2 as
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|E2(m,n)| =

∣∣∣∣∣
∞∑

r=R+1

t(r;m− n)

∣∣∣∣∣ ≤
∞∑

r=R+1

2

πM

(
N

M

)2r−1

=
2

πN

(
N
M

)2R+2

1−
(
N
M

)2 =
2

πN

(
N
M

)2R(
M
N

)2 − 1
.

Choosing R = max
(
− log π

32
((M
N

)2−1)ε

2 log M
N

, 0
)
, we obtain that |E2(m,n)| ≤ ε

16N
. It follows from

the Gershgorin circle theorem that

‖E2‖ ≤ max
m

∑
n

|E2(m,n)| ≤ ε

16
.

By Theorem 3.1, there exist N ×N matrices L1 and E1 with

rank(L1) ≤
(

4
π2 log(8N) + 6

)
log
(

16
ε

)
, ‖E1‖ ≤ 15

16
ε

such that BN,W = FN,WF
∗
N,W +L1 +E1.

Denoting L = L1 +L2 and E = E1 +E2, we obtain

[BM,W ]N = BN,W +L2 +E2 = FN,WF
∗
N,W +L+E,

where

rank(L) ≤ rank(L1) + rank(L2)

≤
(

4
π2 log(8N) + 6

)
log
(

16
ε

)
+ 2 max

(
− log 8π((M

N
)2−1)ε

log(M
N

)
, 0
)

and

‖E‖ ≤ ‖E1‖+ ‖E2‖ ≤
15

16
ε+

1

16
ε = ε.

The proof is finished by invoking Lemma A.2 and utilizing the fact that FN,WF ∗N,W has

only eigenvalues 1 and 0.

A.8 Proof of Corollary 3.5

We first consider the spectrum of [FM ]L, the top-left principal submatrix of FM . It is

clear that its singular values are between 0 and 1 since it is a submatrix of FM . We first
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observe that the gram matrix of [FM ]L, [FM ]∗L[FM ]L is identical to [BM,1/2p]L up to unitary

phase factors, i.e.,

([FM ]∗L[FM ]) [m,n] = e−jπ
m−n
L−1

sin (π(m− n)/p)

M sin ((m− n)π/M)

= e−jπ
m−n
L−1

(
[BM,1/2p]L

)
[m,n], ∀ m,n ∈ [L].

This implies [FM ]∗L[FM ]L has the same eigenvalue distribution to [BM,1/2p]L. Thus, Corol-

lary 3.5 holds for [FM ]L trivially by following Theorem 3.2.

Now note that any submatrix FM |p obtained by deleting any consecutive M −L columns

and any consecutive M − L rows of FM is identical to [FM ]L up to unitary phase factors

FM |p = diag (aξ) [FM ]L diag (aη) ,

where ξ, η depend on the locations of the submatrix FM |p and

aξ =
[
1 e−2π ξ

M · · · e−2π
(L−1)ξ
M

]T

.

Thus, any submatrix FM |p has the same spectrum as [FM ]L.
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APPENDIX B

PROOFS FOR CHAPTER 4

This appendix mainly includes the proofs for Chapter 4.

B.1 Supporting Results

We establish several results which will also be useful in the remaining proofs. We start

by the following result, a variant of Von Neumann’s trace inquality [96].

Lemma B.1. [96] For any M×N (suppose M ≤ N) matrices A and B with singular values

α0 ≥ α1 ≥ · · · ≥ αM−1 ≥ 0 and β0 ≥ β1 ≥ · · · ≥ βM−1 ≥ 0, we have

|trace(AB∗)| ≤
M−1∑
m=0

αmβm.

Proof of Lemma B.1. We enlarge A and B into N ×N matrices A′ and B′ with zero rows,

i.e.,

A′ =

[
A
0

]
, B′ =

[
B
0

]
.

Let α′0 ≥ α′1 ≥ · · ·α′N−1 and β′0 ≥ β′1 ≥ · · · ≥ β′N−1 be the singular values of A′ and B′,

respectively. Note that αn = α′n, βn = β′n for all n ≤M−1 and α′n = 0, β′n = 0 for all n ≥M .

It follows from Von Neumann’s trace inquality [96] that

|trace(AB∗)| = |trace(A′(B′)∗)| ≤
N−1∑
n=0

α′nβ
′
n =

M−1∑
m=0

αmβm.

The following result provides an upper bound on %(Q) by the singular values of F ∗N,WBN,W−

V V ∗F
∗
N,WBN,W .

Lemma B.2. Let V ∈ C(N−2bNW c−1)×R be an orthonormal basis with R ≤ (N−2bNW c−1).

Let π0 ≥ π1 ≥ · · · ≥ πN−2bNW c−2 denote the singular values of F
∗
N,WBN,W−V V ∗F

∗
N,WBN,W .

Then
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%(Q) =

∫ W

−W
‖ef −QQ∗ef‖2

2 df ≤
N−2bNW c−2∑

l=0

πl,

where Q =
[
FN,W FN,WV

]
.

Proof of Lemma B.2. Recall (4.3) that

%(Q) =

∫ W

−W
‖ef −QQ∗ef‖2

2 df = trace (BN,W −QQ∗BN,W ) .

Plugging in Q =
[
FN,W FN,WV

]
, we have

%(Q) = trace
(
BN,W −

[
FN,W FN,WV

] [
FN,W FN,WV

]∗
BN,W

)
= trace

(
F ∗NBN,WFN − F ∗N

[
FN,W FN,WV

] [
FN,W FN,WV

]∗
BN,WFN

)
= trace

(
F
∗
N,WBN,WFN,W − V V ∗F

∗
N,WBN,WFN,W

)
≤

N−2bNW c−2∑
l=0

πl
∥∥FN,W

∥∥
≤

N−2bNW c−2∑
l=0

πl,

(B.1)

where the first inequality follows from Lemma B.1 by settingA = F
∗
N,WBN,W−V V ∗F

∗
N,WBN,W

and B = F
∗
N,W .

In order to utilize Lemma B.2, we need the distribution of the singular values of F ∗N,WBN,W .

This is established by the following result, whose proof is given in Appendix B.6.

Lemma B.3. (singular value decay) Let σ0 ≥ σ1 ≥ · · · ≥ σN−2bNW c−2 denote the singular

values of F ∗N,WBN,W . Then

σ` ≤ ε

when ` = CN log
(

15
ε

)
for any ε ∈ (0, 1). Also

σ` ≤ 15e
− `
CN .

Now we are well equipped to prove the main results.
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B.2 Proof of Theorem 4.1

We first provide the following results on the representation guarantee for the leading

DPSS vectors and the subspace angle between the column spaces of SK and Q. Its proof is

given in Appendix B.7.

Lemma B.4. Let V ∈ C(N−2bNW c−1)×R be an orthonormal basis with R ≤ (N − 2bNW c −

1). For any ε ∈ (0, 1
2
), fix K to be such that λ(K−1)

N,W ≥ ε. Then the orthobasis Q =[
FN,W FN,WV

]
satisfies

‖SKS∗K −QQ∗SKS∗K‖2 ≤ η :=

∥∥∥F ∗N,WBN,W − V V ∗F
∗
N,WBN,W

∥∥∥
ε

,

cos (ΘSK ,Q) ≥
√

1−Nη,∥∥∥s(`)
N,W −QQ

∗s
(`)
N,W

∥∥∥2

2
≤ η

for all l = 0, 1, . . . , K − 1.

Since V is the first R-principal eigenvectors of F ∗N,WBN,W , using Lemma B.3, we obtain∥∥∥F ∗N,WBN,W − V V ∗F
∗
N,WBN,W

∥∥∥ ≤ 15e
− R
CN .

If we set R = CN log
(

15
ε2

)
, we have∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥ ≤ ε2.

Alternatively, if one set R = CN log
(

15N
ε2

)
:∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥ ≤ ε2

N
.

The proof is completed by utilizing Lemma B.4.

B.3 Proof of Theorem 4.2

Let σ0 ≥ σ1 ≥ · · · ≥ σN−2bNW c−2 denote the singular values of F ∗N,WBN,W . Since

V consists of the R dominant left singular vector of F ∗N,WBN,W , the singular values of

F
∗
N,WBN,W − V V ∗F

∗
N,WBN,W are σR, σR+1, . . . , σN−2bNW c−2 and R zeros. It follows from

Lemma B.3 that
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N−2bNW c−2∑
`=R

σ` ≤
N−2bNW c−2∑

`=R

15e
− `
CN

=15
e
− R
CN (1− e−

N−2bNWc−R−1
CN )

1− e−
1
CN

≤15
e
− R
CN

1− e−
1
CN

= 15
e
−R−1
CN

e
1
CN − 1

≤15e
−R−1
CN CN ,

(B.2)

where the last line follows from the Taylor expansion of e
1
CN which results in

1

−1 + 1 + 1
CN

+
(

1
CN

)2

+ · · ·
≤ CN .

If CN log
(

15CN
Nε

)
+ 1 ≤ 0, which implies that

N−2bNW c−2∑
`=0

σ` ≤ Nε,

thus by setting R = 0 and Q = FN,W we are guaranteed that∫ W

−W

‖ef −QQ∗ef‖2
2

‖ef‖2
2

df ≤ 1

N

N−2bNW c−2∑
`=0

σ` ≤
1

N
Nε = ε.

Otherwise, choosing R = CN log
(

15CN
Nε

)
+ 1, we have

N−2bNW c−2∑
`=R

σ` ≤Nε.

Now applying Lemma B.2, we have∫ W

−W

‖ef −QQ∗ef‖2
2

‖ef‖2
2

df ≤ 1

N

N−2bNW c−2∑
`=R

σ` ≤
1

N
Nε = ε,

where we utilize the fact that each sinusoid has energy ‖ef‖2
2 = N .

Remark B.1. By (B.1), we have

%(Q) = trace
(
F
∗
N,WBN,WFN,W − V V ∗F

∗
N,WBN,WFN,W

)
.

Directly solving
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minimize
V ∈C(N−2bNWc−1)×R

trace
(
F
∗
N,WBN,WFN,W − V V ∗F

∗
N,WBN,WFN,W

)
,

we obtain an alternative optimal solution V ′ consisting of the first R principal eigenvectors of

F
∗
N,WBN,WFN,W . The orthobasis Q′ =

[
FN,W FN,WV

′] is optimal in terms of minimizing

%(Q) and also for averagely representing all discrete-time sinusoids with a frequency f ∈

[−W,W ] in the least square sense. We can also have similar approximation guarantee for

V ′. Note that

F ∗N
(
BN,W − FN,WF ∗N,W

)
FN =

[
F ∗N,WBN,WFN,W − I F ∗N,WBN,WFN,W

F
∗
N,WBN,WFN,W F

∗
N,WBN,WFN,W

]
.

By utilizing the result that

BN,W = FN,WF
∗
N,W +L+E,

where

rank(L) ≤ CN log

(
15

ε

)
and ‖E‖ ≤ ε,

we can rewrite F ∗N,WBN,WFN,W = L2 +E2, where

L2 := F
∗
N,WLFN,W and E2 := F

∗
N,WEFN,W .

Thus,

rank(L2) ≤ CN log

(
15

ε

)
and ‖E2‖ ≤ ε.

It follows from Eckart-Young-Mirsky theorem [44] that

‖F ∗N,WBN,WFN,W − V ′(V ′)∗F
∗
N,WBN,WFN,W‖ ≤ ‖E2‖ ≤ ε.

Therefore, choosing R = CN log
(

15CN
Nε

)
+ 1, with similar argument we also have

∫ W

−W

‖ef −QQ∗ef‖2
2

‖ef‖2
2

df ≤ 1

N
trace

(
F
∗
N,WBN,WFN,W − V ′(V ′)∗F

∗
N,WBN,WFN,W

)
≤ ε.

We note that all the other results on V can also be applied to V ′ with similar or slightly

different guarantee.
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B.4 Proof of Theorem 4.3

By Theorem 4.2, we are guaranteed that the pure sinusoids have, on average, a small

representation residual in the basis Q. Intuitively, the representation error for each pure

sinusoids is also guaranteed to be small. The following result provides an upper bound on

the representation error for each pure sinusoid with the average representation error. Its

proof is given in Appendix B.8.

Lemma B.5. For any q ∈ {1, 2, . . . , N}, suppose U ∈ CN×q is an orthonormal basis such

that U ∗U = I. Also suppose W ≥ 1
4πN

. Then

‖ef −UU ∗ef‖2
2

‖ef‖2
2

≤ max

2
√
π

√∫ W

−W
‖ef −UU ∗ef‖2

2 df,
1

NW

∫ W

−W
‖ef −UU ∗ef‖2

2

 .

Proof of Theorem 4.3. It follows from (B.2) that by choosing R = CN log
(

15CN
ε′

)
+ 1, we

have

N−2bNW c−1∑
l=R

σl ≤ε′.

Utilizing Lemma B.2 gives∫ W

−W
‖ef −QQ∗ef‖2

2 df ≤
N−2bNW c−1∑

l=R

σl ≤ ε′.

The proof is completed by setting

ε′ =
ε2

4π
, R = CN log

(
60πCN
ε2

)
+ 1,

or

ε′ = NWε, R = CN log

(
15CN
NWε

)
+ 1.
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B.5 Proof of Theorem 4.5

We first present the following guarantees on randomized algorithms for computing or-

thonormal basis from [60].

Theorem B.1. [60, Theorem 10.5] (average Frobenius norm) Let A be an M ×N (suppose

M ≤ N) matrix with singular values α0 ≥ α1 ≥ · · · ≥ αM−1. Choose a target rank R ≥ 2

and an oversampling parameter p ≥ 2, where P = R+ p ≤M . Let Ω be an N ×P standard

Gaussian matrix. Let PY be an orthogonal projector onto the column space of the sample

matrix Y = AΩ. Then the expected approximation error

E [‖A− PYA‖F ] ≤
(

1 +
R

p− 1

)1/2
(
M−1∑
m=R

α2
m

)1/2

,

where E denotes expectation with respect to the random matrix Ω.

Theorem B.2. [60, Theorem10.6] (average spectral error) Under the setup of Theorem B.1,

E [‖A− PYA‖] ≤

(
1 +

√
R

p− 1

)
αR +

e
√
P

p

(
M−1∑
m=R

α2
m

)1/2

.

Proof of Theorem 4.5. Let σ0 ≥ σ1 ≥ · · · ≥ σN−2bNW c−2 denote the singular values of

F
∗
N,WBN,W . Utilizing Lemma B.3, we have

N−2bNW c−2∑
l=R

σ2
l ≤

N−2bNW c−2∑
l=R

(
15e

− `
CN

)2

=225
e
−2 R

CN (1− e−2
N−2bNWc−R−1

CN )

1− e−
2
CN

≤225
e
−2 R

CN

1− e−
2
CN

= 225
e
−2R−1

CN

e
2
CN − 1

≤225e
−2R−1

CN
CN
2
.

Note that here V is an orthonormal basis for the column space of the sample matrix

F
∗
N,WBN,WΩ. Let π0 ≥ π1 ≥ · · · ≥ πN−2bNW c−2 denote the singular values of F ∗N,WBN,W −

V V ∗F
∗
N,WBN,W .
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• Utilizing Theorem B.2, we have

E
[∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥]
≤

(
1 +

√
R

P −R− 1

)
σR +

e
√
P

P −R

(
M−1∑
l=R

σ2
l

)1/2

≤

(
1 +

√
R

P −R− 1

)
15e

− R
CN +

e
√
P

P −R

(
225e

−2R−1
CN

CN
2

)1/2

=

(
1 +

√
R

P −R− 1

)
15e

− R
CN + 15

e
√
P

P −R
e
−R−1
CN

√
CN
2
.

Setting R = CN log
(

30+15e
ε2

)
+ 1 and P = 2R + 1, we have

E
[∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥] ≤ 30
ε2

30 + 15e
+ 15e

√
CN
R + 1

ε2

30 + 15e
≤ ε2

since CN ≤ R for any ε2 ∈ (0, 1). It follows from Lemma B.4 that

E
[
‖SKS∗K −QQ∗SKS∗K‖2

]
≤

E
[∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥]
ε

≤ ε

E
[
‖s(`)

N,W −QQ
∗s

(`)
N,W‖

2
]
≤ ε

for all l = 0, 1, . . . , K − 1. Alternatively, setting R = CN log
(

(30+15e)N
ε2

)
+ 1 and

P = 2R + 1, we have

E
[∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥] ≤ ε2

N
.

Thus applying Lemma B.4 gives

E [cos (ΘSK ,Q)] ≥

√√√√
1−N

E
[∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥]
ε

≥
√

1− ε.

• Set p = R
3

+ 1, i.e., P = 4
3
R + 1. It follows from Theorem B.1 that
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E
∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥
F
≤
(

1 +
R

p− 1

)1/2
N−2bNW c−2∑

l=R

σ2
l

1/2

≤2

√
225e

−2R−1
CN

CN
2

=15e
−R−1
CN

√
2CN .

By applying Lemma B.2 and utilizing the inequality between the Frobenius norm and

the nuclear norm, we have

E
∫ W

−W

‖ef −QQ∗ef‖2
2

‖ef‖2
2

df =
1

N
E
N−2bNW c−2∑

m=0

πm

≤ 1

N
NE

∥∥∥F ∗N,WBN,W − V V ∗F
∗
N,WBN,W

∥∥∥
F
≤ 15e

−R−1
CN

√
2CN .

(B.3)

Setting R = CN log
(

15
√

2CN
ε

)
+ 1, we obtain

E
∫ W

−W

‖ef −QQ∗ef‖2
2

‖ef‖2
2

df ≤ ε.

• Set p = R
3

+ 1, i.e., P = 4
3
R + 1. From (B.3), it follows that

E
[∫ W

−W
‖ef −QQ∗ef‖2

2

]
≤ 15Ne

−R−1
CN

√
2CN .

Utilizing Lemma B.5, we have

E

[
‖ef −QQ∗ef‖2

2

‖ef‖2
2

]

≤max

E

2
√
π

√∫ W

−W
‖ef −QQ∗ef‖2

2 df

 ,E [NW ∫ W

−W
‖ef −QQ∗ef‖2

2

]
≤max

(
2

√
15πN

√
2CNe

−R−1
2CN ,

15Ne
−R−1
CN

√
2CN

NW

)
.

Setting
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R = max

(
CN log

(
60πN

√
2CN

ε2

)
+ 1, CN log

(
15π
√

2CN
Wε

)
+ 1

)
yields

E

[
‖ef −QQ∗ef‖2

2

‖ef‖2
2

]
≤ ε.

B.6 Proof of Lemma B.3

Note that

F ∗N
(
BN,W − FN,WF ∗N,W

)
=

[
F ∗N,WBN,W − F ∗N,W

F
∗
N,WBN,W

]
.

By utilizing the result that

BN,W = FN,WF
∗
N,W +L+E,

where

rank(L) ≤ CN log

(
15

ε

)
and ‖E‖ ≤ ε,

we can rewrite F ∗N,WBN,W = L1 +E1, where

L1 := F
∗
N,WL and E1 := F

∗
N,WE.

Thus,

rank(L1) ≤ CN log

(
15

ε

)
and ‖E1‖ ≤ ε.

It follows from Eckart-Young-Mirsky theorem [44] that

σrank(L1) ≤ ‖E1‖ ≤ ε

for any ε ∈ (0, 1). Noting that ‖F ∗N,WBN,W‖ ≤ ‖F
∗
N,W‖‖BN,W‖ < 1, we have

σ` ≤ 15e
− `
CN .
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for all ` = 0, 1, . . . , N − 2bNW c − 2. Otherwise, suppose σ` > 15e
− `
CN . If 15e

− `
CN ≥ 1, then

it contradicts to the fact that σ` < 1. If 15e
− `
CN < 1, let ε = 15e

− `
CN . Then we have a

contradiction to the fact that σrank(L1) ≤ ε and rank(L1) ≤ CN log
(

15
ε

)
= `.

B.7 Proof of Lemma B.4

Fix K to be such that λ(K−1)
N,W > ε. Utilizing BN,W = SN,WΛN,WS

∗
N,W , we have

‖BN,W −QQ∗BN,W‖ =‖SN,WΛN,WS
∗
N,W −QQ∗SN,WΛN,WS

∗
N,W‖

=‖ΛN,W − S∗N,WQQ∗SN,WΛN,W‖
≥‖ΛK − S∗KQQ∗KΛK‖
=‖ (I− S∗KQQ∗SK) ΛK‖
≥‖I− S∗KQQ∗SK‖ ε.

On the other hand,

‖BN,W −QQ∗BN,W‖ =
∥∥∥BN,W −

[
FN,W FN,WV

] [
FN,W FN,WV

]∗
BN,W

∥∥∥
=
∥∥∥F ∗NBN,W − F ∗N

[
FN,W FN,WV

] [
FN,W FN,WV

]∗
BN,W

∥∥∥
=
∥∥∥F ∗N,WBN,W − V V ∗F

∗
N,WBN,W

∥∥∥ .
Combining the above two sets of equations yields

‖I− S∗KQQ∗SK‖ ≤ η =

∥∥∥F ∗N,WBN,W − V V ∗F
∗
N,WBN,W

∥∥∥
ε

.

Now exploit the relationship between SKS∗K −QQ∗SKS∗K and I− S∗KQQ∗SK as follows

‖SKS∗K −QQ∗SKS∗K‖
2 =

∥∥∥(SKS
∗
K −QQ∗SKS∗K)T (SKS

∗
K −QQ∗SKS∗K)

∥∥∥
= ‖SK (I− S∗KQQ∗SK)S?K‖
≤‖(I− S∗KQQ∗SK)‖ ≤ η.

Then, utilizing the inequality ‖I− S∗KQQ∗SK‖max ≤ ‖I− S∗KQQ∗SK‖, where ‖A‖max is

the maximum absolute entries of A, we have
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∣∣∣(s(`)
N,W

)∗
QQ∗s

(l′)
N,W

∣∣∣ ≤ ‖I− S∗KQQ∗SK‖ ≤ η

for all ` 6= `′, `, `′ = 0, 1, . . . , K − 1, and

∥∥∥s(`)
N,W −QQ

∗s
(`)
N,W

∥∥∥2

2
= 1−

∥∥∥Q∗s(`)
N,W

∥∥∥2

2
≤ ‖I− S∗KQQ∗SK‖ ≤ η

for all ` = 0, 1, . . . , K − 1.

Let s be an arbitrary unit vector in the subspace spanned by SK , i.e., s =
∑K−1

`=0 α`s
(`)
N,W

with ‖s‖2 =
∑K−1

`=0 α2
` = 1. We have

‖s−QQ∗s‖2 =

∥∥∥∥∥
K−1∑
`=0

α`

(
s

(`)
N,W −QQ

∗s
(`)
N,W

)∥∥∥∥∥
2

≤
K−1∑
`=0

|α`|
∥∥∥s(`)

N,W −QQ
∗s

(`)
N,W

∥∥∥
2

≤ √η
K−1∑
`=0

|α`|

≤
√
Kη ≤

√
Nη

where the last line follows from the inequality between L1-norm and L2-norm: ‖a‖1 ≤
√
K‖a‖2 for any a ∈ RK . Thus, we obtain

‖QQ∗s‖2
2 = 1− ‖s−QQ∗s‖2

2 ≥ 1−Nη.

Since this result holds for arbitrary unit vector s in the subspace spanned by SK , we finally

have

cos(ΘSK ,Q) ≥
√

1−Nη.

B.8 Proof of Lemma B.5

Let Φ be an N×N diagonal matrix with diagonal entries j2π0, j2π, . . . , j2π(N−1). The

derivative of ‖ef −UU ∗ef‖2
2 in terms of f can be computed as
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d

df
‖ef −UU ∗ef‖2

2 = 2R
(
e∗f (I−UU ∗) Πef

)
.

We first obtain an upper bound for its derivative

∣∣∣∣ ddf ‖ef −UU ∗ef‖2
2

∣∣∣∣ ≤2
∣∣e∗f (I−UU ∗) Πef

∣∣
≤2
∣∣e∗fΠef ∣∣ ‖I−UU ∗‖

≤2
∣∣e∗fΠef ∣∣ ≤ 2πN(N − 1) ≤ 2πN2

for all f ∈ [0, 1]. Since ‖ef −UU ∗ef‖2
2 is nonngetaive and its derivative is bounded above,

‖ef −UU ∗ef‖2
2 cannot be too large if

∫W
−W ‖ef −UU

∗ef‖2
2 df is very small.

(a) (b)

Figure B.1: (a) Illustration of (B.4), where the area below the black curve is always larger
than or equal to the area of each red triangle; (b) Illustration of (B.5), where the area below
the black curve is always larger than or equal to the area indicated by red dashed lines.

Suppose ‖
ef−UU∗ef‖2

2

2πN2 ≤ 2W . As illustrated in Figure B.1, for any f ∈ [−W,W ], we can

always find a triangle with area either

‖ef −UU ∗ef‖4
2

2 supf∈[−W,W ]

∣∣∣ ddf ‖ef −UU ∗ef‖2
2

∣∣∣
(the area of the left and right red triangles) or

‖ef −UU ∗ef‖4
2

supf∈[−W,W ]

∣∣∣ ddf ‖ef −UU ∗ef‖2
2

∣∣∣
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(the area of the middle red triangle) that is smaller than
∫W
−W ‖ef −UU

∗ef‖2
2 df (the area

under the black curve). This is made more precise as

‖ef −UU ∗ef‖4
2

4πN2
≤

‖ef −UU ∗ef‖4
2

2 supf∈[−W,W ]

∣∣∣ ddf ‖ef −UU ∗ef‖2
2

∣∣∣ ≤
∫ W

−W
‖ef −UU ∗ef‖2

2 df (B.4)

for all f ∈ [−W,W ]. Thus, we have

‖ef −UU ∗ef‖2
2

‖ef‖2
2

=
‖ef −UU ∗ef‖2

2

N
≤ 2
√
π

√∫ W

−W
‖ef −UU ∗ef‖2

2 df

for all f ∈ [−W,W ].

On the other hand, suppose ‖
ef−UU∗ef‖2

2

2πN2 > 2W . With similar argument, as illus-

trated in Figure B.1, for any f ∈ [−W,W ], we can always find a region of area at least

W ‖ef −UU ∗ef‖2
2 (the area indicated by red dashed lines) that is smaller than that is

smaller than
∫W
−W ‖ef −UU

∗ef‖2
2 df (the area under the black curve). This is made more

precise as

W ‖ef −UU ∗ef‖2
2 ≤

∫ W

−W
‖ef −UU ∗ef‖2

2 df (B.5)

for all f ∈ [−W,W ]. Thus, we have

‖ef −UU ∗ef‖2
2

‖ef‖2
2

≤ 1

NW

∫ W

−W
‖ef −UU ∗ef‖2

2 df

for all f ∈ [−W,W ].
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APPENDIX C

PROOFS FOR CHAPTER 5

This appendix contains the proofs for Chapter 5.

C.1 Proof of Lemma 5.1

Let y ∈ CN ,y 6= 0 be an arbitrary vector. Then

〈IN(BW(I∗N(y))),y〉 =
N−1∑
m=0

IN(BW(I∗N(y)))[m]y[m] =
N−1∑
m=0

(
N−1∑
n=0

∫
W
ej2πf(m−n)dfy[n]

)
y[m]

=

∫
W

(
N−1∑
m=0

ej2πfmy[m]

)(
N−1∑
n=0

e−j2πfny[n]

)
df =

∫
W
|
N−1∑
n=0

y[n]e−j2πfn|2df > 0,

where y is the complex-conjugate of the vector y,
∑N−1

n=0 y[n]e−j2πfn is the DTFT of I∗N(y),

and the last inequality is derived from the fact that compactly supported signals cannot have

perfectly flat magnitude response.

By Parsevel’s Theorem, we know
∫ 1/2

−1/2
|
∑N−1

n=0 y[n]e−j2πfn|2df = ||y||22. Therefore

〈IN(BW(I∗N(y))),y〉 =

∫
W
|
N−1∑
n=0

y[n]e−j2πfn|2df < ||y||22.

Thus, we have

0 < min
y∈CN

〈IN(BW(I∗N(y))),y〉
||y||22

≤ λ
(`)
N,W ≤ max

y∈CN

〈IN(BW(I∗N(y))),y〉
||y||22

< 1

for all ` ∈ [N ].

By noting that INBWI∗N is equivalent to BN,W, we have

N−1∑
`=0

λ
(`)
N,W = trace(BN,W) =

N−1∑
n=0

BN,W[n, n] =
N−1∑
n=0

∫
W
ej2πf0df = N |W|.
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C.2 Proof of Theorem 5.1

First we state a useful inequality about the Frobenius norm of positive semi-definite

matrices. Suppose X ∈ CN×N and Y ∈ CN×N are two arbitrary positive semi-definite

matrices. Then

||X + Y ||2F = trace
(
(X + Y )H(X + Y )

)
= ||X||2F + ||Y ||2F + 2trace(XHY )

≥ ||X||2F + ||Y ||2F ,

where the last inequality is derived from the fact that trace(XHY ) is nonnegative, which can

be showed as follows. By the hypothesis thatX and Y are positive semi-definite matrices, we

have the factorizationXH = X = X1/2X1/2, whereX1/2 is also a positive semi-definite ma-

trix.20 Then we conclude that trace(XHY ) = trace(X1/2X1/2Y ) = trace(X1/2Y X1/2) ≥ 0,

since X1/2Y X1/2 is also a positive semi-definite matrix.

We next bound the Frobenius norm of BN,Wi
by

||BN,Wi
||2F = N(2Wi)

2 +
∑∑
m 6=n

(
sin (2πWi(m− n))

π(m− n)

)2

= 4NW 2
i + 2

N−1∑
n=1

(N − n)

(
sin (2πWin)

πn

)2

= 4NW 2
i + 2N

N−1∑
n=1

(
sin (2πWin)

πn

)2

− 2
N−1∑
n=1

n

(
sin (2πWin)

πn

)2

= 4NW 2
i + 2N

(
Wi − 2W 2

i −
∞∑
n=N

(
sin (2πWin)

πn

)2
)
− 2

N−1∑
n=1

n

(
sin (2πWin)

πn

)2

≥ 4NW 2
i + 2N

(
Wi − 2W 2

i −
1

π2

∫ ∞
N−1

1

x2
dx

)
− 2

1

π2

(∫ N−1

1

1

x
dx+ 1

)
= 2NWi −

2

π2

2N − 1

N − 1
− 2

π2
log(N − 1),

20Note that X has the eigen-decomposition X = V DV H where V is an orthonormal matrix and D is a
diagonal matrix whose diagonal elements are non-negative, giving the square root X1/2 = V D1/2V H .
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where the fourth line follows from Parseval’s theorem
∑∞

n=−∞

(
sin(2πWin)

πn

)2

=
∫Wi

−Wi
df = 2Wi,

which indicates that
∑∞

n=1

(
sin(2πWin)

πn

)2

= Wi − 2W 2
i .

Now applying the above results yields

||BN,W||2F = ||
J−1∑
i=0

EfiBN,Wi
EH
fi
||2F

≥
J−1∑
i=0

||BN,Wi
||2F

≥
J−1∑
i=0

(
2NWi −

2

π2

2N − 1

N − 1
− 2

π2
log(N − 1)

)
= N |W| − J

(
2

π2

2N − 1

N − 1
+

2

π2
log(N − 1)

)
,

where the second line follows since EfiBN,Wi
EH
fi
is positive semi-definite. Recalling the result

stated in Lemma 5.1 that
∑N−1

`=0 λ
(`)
N,W = trace(BN,W) = N |W|, we get

N−1∑
`=0

λ
(`)
N,W(1− λ(`)

N,W) = trace(BN,W)− ||BN,W||2F ≤ J

(
2

π2

2N − 1

N − 1
+

2

π2
log(N − 1)

)
.

Thus, equation (5.2) follows by noting that for any ε ∈ (0, 1
2
) one has

N−1∑
`=0

λ
(`)
N,W(1− λ(`)

N,W) ≥
∑

{l:ε≤λ(`)
N,W≤1−ε}

λ
(`)
N,W(1− λ(`)

N,W) ≥ ε(1− ε)#{l : ε ≤ λ
(`)
N,W ≤ 1− ε}.

C.3 Proof of Theorem 5.2

A precise proof of a similar result for time- and band-limiting operators in the continuous

domain was first given in [80]. Izu and Lakey [70] extend the result to multiple intervals

in the frequency domain or time domain. Their work forms the foundation of the following

analysis.

As we have noted, the two operators TNBWTN and INBWI∗N have the same eigenvalues.

We work with TNBWTN to prove Theorem 5.2. For convenience, we also use λ(0)
N,W, . . . , λ

(N−1)
N,W

to denote the decreasing eigenvalues for the operator TNBWTN . We let S([N ]) denote the
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subspace of all finite-energy sequences supported only on the index set [N ], that is

S([N ]) = {y : y ∈ `2(Z), TN(y) = y}.

First, for all integers ` ∈ [N ], the Weyl-Courant minimax representation of the eigenvalues

can be stated as

λ
(`)
N,W =

{
minS` maxy∈`2(Z),y⊥S`

〈TN (BW(TN (y))),y〉
〈y,y〉 ,

maxSl+1
miny∈`2(Z),y∈Sl+1

〈TN (BW(TN (y))),y〉
〈y,y〉 ,

=

{
minS` maxy∈S([N ]),y⊥S`

〈TN (BW(TN (y))),y〉
〈y,y〉 ,

maxSl+1
miny∈S([N ]),y∈Sl+1

〈TN (BW(TN (y))),y〉
〈y,y〉 ,

=

 minS` maxy∈S([N ]),y⊥S`

∫
W |ỹ(f)|2df
||y||22

,

maxSl+1
miny∈S([N ]),y∈Sl+1

∫
W |ỹ(f)|2df
||y||22

,

(C.1)

where S` is an `-dimensional subspace of `2(Z), and ỹ(f) is the DTFT of the sequence y.

Noting that all the eigenvectors of TNBWTN belong to S([N ]), we restrict to y ∈ S([N ]) in

the second line.

Lemma C.1. Consider the bandlimited sequence g ∈ `2(Z) whose DTFT is given by

g̃(f) =

{ √
2N cos(Nπf)e−j2πfb

N
2
c, |f | ≤ 1

2N
,

0, 1
2N

< |f | ≤ 1
2
.

(C.2)

Then ||g||22 = 1 and g[n] ≥ 1√
2N

for all n ∈ [N ].

Proof of Lemma C.1. . First it is easy to check that ||g||22 =
∫ 1

2

− 1
2

|g̃(f)|2df = 1. Then

computing the inverse DTFT directly yields

g[n] =
1√
2N

sinc

(
n− bN

2
c

N
− 1

2

)
+

1√
2N

sinc

(
n− bN

2
c

N
+

1

2

)
.

Let ξ(t) = sinc(t − 1
2
) + sinc(t + 1

2
). Taking the directive of ξ(t), we would find on [−1

2
, 1

2
]

that ξ(t) achieves its minimum value of 1 at the points t = ±1
2
. Therefore, g[n] ≥ 1√

2N
since

|n−b
N
2
c

N
| ≤ 1

2
for all n ∈ [N ].
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C.3.1 Upper Bound

From equation (C.1), we know that

λ
(`)
N,W = min

S`
max

y∈S([N ]),y⊥S`

∫
W |ỹ(f)|2df
||y||22

.

Therefore, in order to bound the eigenvalues from above, it suffices to pick an appropriate

`-dimensional subspace S` ⊂ `2(Z) and then find a uniform upper bound for the quantity

above for all time-limited sequences y ∈ S([N ]) orthogonal to S`.

Consider the bandlimited sequence g ∈ `2(Z) defined in (C.2). Let Ef0 : `2(Z) → `2(Z)

denote a modulating operator with Ef0(y)[n] := ej2πf0ny[n] for all n ∈ Z and f0 ∈ [−1
2
, 1

2
].

Set

L+ = {n′ ∈ Z : −bN
2
c ≤ n′ ≤ bN − 1

2
c, (

n′

N
− 1

2N
,
n′

N
+

1

2N
) ∩W 6= ∅}

and hence ι+ = #L+. Let Sι+ be the ι+-dimensional subspace of `2(Z) spanned by the

functions En′
N
g, n′ ∈ L+, that is,

Sι+ := span
(
{En′

N
g}n′∈L+

)
.

If the time-limited sequence y ∈ S([N ]) is orthogonal to Sι+ , then

0 = 〈y, En′
N
g〉 = 〈ỹ, g̃(· − n′

N
)〉 =

(
ỹ ? g̃

)(n′
N

)
=: gy[n

′], n′ ∈ L+,

where g := g∗ is the complex-conjugate of the sequence g and g̃ is the DTFT of g.

Now it follows that
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bN−1
2
c∑

n′=−bN
2
c

|gy[n′]|2 =
∑
n′∈LC+

|gy[n′]|2

=
∑
n′∈LC+

|
∫ n′+1/2

N

n′−1/2
N

ỹ(f)g̃(
n′

N
− f)df |2

≤
∑
n′∈LC+

||g||22 ∫ n′+1/2
N

n′−1/2
N

|ỹ(f)|2df


≤
∫
f /∈W
|ỹ(f)|2df

= ||y||22 −
∫
f∈W
|ỹ(f)|2df,

(C.3)

where LC+ is defined as LC+ := {n′ ∈ Z : −bN
2
c ≤ n′ ≤ bN−1

2
c, n′ /∈ L+}, the second

line holds because g is bandlimited to [− 1
2N
, 1

2N
], the third line follows from the Cauchy-

Schwarz inequality, and the fourth line holds because ||g||2 = 1 and by construction, the set

∪n′∈L+ [n
′

N
− 1

2N
, n
′

N
+ 1

2N
] covers the intervals W completely. On the other hand, let y � g

denote the pointwise product between y and g, that is (y� g)[n] = y[n]g[n]. Note that y� g

has the same support in time as y, namely [N ], and { 1√
N
en′
N
,−bN

2
c ≤ n′ ≤ bN−1

2
c} forms an

orthobasis (normalized DFT basis) for CN . We can rewrite gy[n′] = eHn′
N

(y � g), which can

be viewed as the DFT of y � g. Therefore, using Parseval’s theorem, we acquire

bN−1
2
c∑

n′=−bN
2
c

|gy[n′]|2 = N ||y � g||22 ≥
1

2
||y||22

since by hypothesis, g[n] ≥ 1√
2N

for all n ∈ [N ]. Now, combining the above lower bound on

the energy of the sequence gy and the upper bound in (C.3), we observe that

1

2
||y||22 ≤ ||y||22 −

∫
f∈W
|ỹ(f)|2df,

and therefore,

λ
(ι+)
N,W ≤

∫
W |ỹ(f)|2df
||y||22

≤ 1

2
.
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C.3.2 Lower Bound

In the other direction, consider the minimax representation

λ
(`)
N,W = max

Sl+1

min
y∈S([N ]),y∈Sl+1

∫
W |ỹ(f)|2df
||y||22

.

In order to find a lower bound for the eigenvalues, it suffices to pick an appropriate (l + 1)-

dimensional subspace Sl+1 ⊂ `2(Z) and then find a uniform lower bound for the quantity

above for all time-limited sequences y ∈ S([N ]) inside Sl+1. With g as defined in (C.2), let

the time-limited sequence h ∈ `2([N ]) be such that h[n] = 1/g[n] for all n ∈ [N ]. We set

L− := {n′ ∈ Z : −bN
2
c ≤ n′ ≤ bN − 1

2
c, (

n′

N
− 1

2N
,
n′

N
+

1

2N
) ⊂W},

and hence ι− = #L−. Let Sι− be the ι−-dimensional subspace of `2(Z) spanned by the

functions En′
N
h, n′ ∈ L−, that is,

Sι− := span
(
{En′

N
h}n′∈L−

)
.

Suppose y ∈ Sι− (and hence y ∈ `2([N ])). Then we may write

y =
∑
n′∈L−

bn′En′
N
h

for some coefficients bn′ . Moreover,

y � g =
∑
n′∈L−

bn′en′
N
.

Noting that { 1√
N
en′
N
,−bN

2
c ≤ n′ ≤ bN−1

2
c} forms an orthobasis for CN , we obtain

∑
n′∈L−

|bn′|2 = N ||y � g||22 = N

N−1∑
n=0

|y[n]� g[n]|2 ≥ 1

2

N−1∑
n=0

|y[n]|2 =
1

2
||y||22
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since by definition, g[n] ≥ 1√
2N

for all n ∈ [N ]. On the other hand,

bn′ =
N−1∑
n=0

g[n]y[n]e−j2π
n′
N
n = 〈y, En′

N
g〉.

Now using the same procedure as in (C.3), one has

∑
n′∈L−

|bn′ |2 =
∑
n′∈L−

|〈y, En′
N
g〉|2

=
∑
n′∈L−

|
∫ n′+1/2

N

n′−1/2
N

ỹ(f)g̃(
n′

N
− f)df |2

≤
∑
n′∈L−

||g||22 ∫ n′+1/2
N

n′−1/2
N

|ỹ(f)|2df


≤
∫
f∈W
|ỹ(f)|2df,

where the last line holds since by construction, the set ∪n′∈Li [n
′

N
− 1

2N
, n
′

N
+ 1

2N
] is a subset of

the intervals W. Altogether, we then conclude that for any y ∈ Sι− (and hence y ∈ S([N ])),

1

2
||y||22 ≤

∫
f∈W
|ỹ(f)|2df.

And hence

λ
(ι−−1)
N,W ≥

∫
f∈W |ỹ(f)|2df
||y||22

≥ 1

2
.

C.4 Proof of Theorem 5.3

Proof of eigenvalues that cluster near zero

Since BN,W =
∑J−1

i=0 EfiBN,Wi
EH
fi

, according to [67] (see pp. 181), the following holds

λ
(`)
N,W ≤

J−1∑
i=0

λ
(`i)
N,Wi
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for all `i ∈ [N ], i ∈ [J ] and ` =
∑J−1

i=0 li ∈ [N ].

Fix ε ∈ (0, 1
|W| − 1). For each i ∈ [J ], let N1(Wi, ε), C3(Wi, ε) and C4(Wi, ε) be the

constants specified in Lemma 2.1 with respect to Wi and ε. If we let

N1(W, ε) = max {N1(Wi, ε), ∀ i ∈ [J ]},

then we have

λ
(`i)
N,Wi

≤ C3(Wi, ε)e
−C4(Wi,ε)N , ∀ li ≥ d2NWi(1 + ε)e, i ∈ [J ]

for all N ≥ N1(W, ε). Hence, by choosing `i ≥ d2NWi(1 + ε)e, ∀ i ∈ [J ], we have

λ
(`)
N,W ≤

J−1∑
i=0

C3(Wi, ε)e
−C4(Wi,ε)N ≤ C3(W, ε)e−C4(W,ε)N ,

for allN ≥ N1(W, ε) and ` ≥
∑

id2NWi(1+ε)e,where C3(W, ε) = J max {C3(Wi, ε), ∀ i ∈ [J ]}

and C4(W, ε) = min {C4(Wi, ε), ∀ i ∈ [J ]}.

ε-pseudo eigenvalue and eigenvectors

Definition C.1. (ε-pseudo eigenvalue and eigenvector [105]) Let X ∈ CN×N be any matrix

and u ∈ CN be any vector with unit `2-norm. Given ε > 0, the number λ ∈ C and vector

u ∈ CN are an ε-pseudo eigenpair of X if the following condition is satisfied:

||(X − λI)u||22 ≤ ε.

Lemma C.2. Suppose W is a fixed finite union of J pairwise disjoint intervals as defined

in (2.6). Fix ε ∈ (0, 1). For each i ∈ [J ], let N0(Wi, ε) be the constant specified in Lemma

2.1 with respect to Wi and ε and let Ñ0(W, ε) = max {N0(Wi, ε), ∀ i ∈ [J ]}. Then for all

`i ≤ 2NWi(1− ε), i ∈ [J ] and N > Ñ0(W, ε), (λ(`i)
N,Wi

, Efis
(`i)
N,Wi

) is an ε-pseudo eigenpair of

INBWI∗N with ε ≤ 2C1(Wi, ε)e
−C2(Wi,ε)N , or in detail

IN(BW(I∗N(Efis
(`i)
N,Wi

))) = λ
(`i)
N,Wi

Efis
(`i)
N,Wi

+ o
(`i)
i ,
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where o(`i)
i = IN(BW\[fi−Wi,fi+Wi](I∗N(Efis

(`i)
N,Wi

))) and ||o(`i)
i ||22 ≤ 2C1(Wi, ε)e

−C2(Wi,ε)N . Here

W \ [fi − Wi, fi + Wi] =
⋃
i′ 6=i

[fi′ − Wi′ , fi′ + Wi′ ] means the set difference between W and

[fi − Wi, fi + Wi], and C1(Wi, ε) and C2(Wi, ε) are the constants specified in Lemma 2.1

corresponding to Wi and ε for all i ∈ [J ].

Proof of Lemma C.2. According to the definition of the operator INBWI∗N ,

(
IN(BW(I∗N(Efis

(`i)
N,Wi

)))
)

[m]

=
N−1∑
n=0

J−1∑
i′=0

ej2πfi′ (m−n) sin(2πWi′(m− n))

π(m− n)
ej2πfins

(`i)
N,Wi

[n]

=ej2πfimλ
(`i)
N,Wi

s
(`i)
N,Wi

[m] +
N−1∑
n=0

J−1∑
i′=0,i′ 6=i

ej2πfi′ (m−n) sin(2πWi′(m− n))

π(m− n)
ej2πfins

(`i)
N,Wi

[n]

=ej2πfimλ
(`i)
N,Wi

s
(`i)
N,Wi

[m] + IN(BW\[fi−Wi,fi+Wi](I∗N(Efis
(`i)
N,Wi

)))[m].

In what follows, we will bound the energy of o(`i)
i = IN(BW\[fi−Wi,fi+Wi](I∗N(Efis

(`i)
N,Wi

)))

as

||o(`i)
i ||22 = ||IN(BW\[fi−Wi,fi+Wi](I∗N(Efis

(`i)
N,Wi

)))||22
≤ ||BW\[fi−Wi,fi+Wi](I∗N(Efis

(`i)
N,Wi

))||22
≤ ||B[− 1

2
, 1
2

]\[fi−Wi,fi+Wi]
(I∗N(Efis

(`i)
N,Wi

))||22
= ||s(`i)

N,Wi
||22 − ||B[fi−Wi,fi+Wi](I∗N(Efis

(`i)
N,Wi

))||22
≤ ||s(`i)

N,Wi
||22 − ||IN(B[fi−Wi,fi+Wi](I∗N(Efis

(`i)
N,Wi

)))||22
≤ 1− (λ

(`i)
N,Wi

)2 ≤ 1− (1− C1(Wi, ε)e
−C2(Wi,ε)N)2

= 2C1(Wi, ε)e
−C2(Wi,ε)N − (C1(Wi, ε)e

−C2(Wi,ε)N)2 ≤ 2C1(Wi, ε)e
−C2(Wi,ε)N

for all `i ≤ b2NWi(1 − ε)c, i ∈ [J ] and N ≥ Ñ0(W, ε). Here the second inequality in the

sixth line follows simply from Lemma 2.1 since Ñ0(W, ε) ≥ N0(Wi, ε).

Using this result, we now show the first ≈ N |W| eigenvalues of INBWI∗N are close to 1.

Proof of eigenvalues that cluster near one
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The main idea is to guarantee that the sum of the first ≈ N |W| eigenvalues is sufficiently

closeN |W|. Then we conclude that the first≈ N |W| eigenvalues cluster near one by applying

the fact that the eigenvalues are upper bounded by 1. First we state the following useful

results.

Lemma C.3. ([32] Lemma 5.1) Fix ε ∈ (0, 1). Let ki = b2NWi(1 − ε)c, ∀ i ∈ [J ], and let

Ψ be the dictionary as defined in (5.1). Then for any pair of distinct columns ψ1 and ψ2 in

Ψ, we have

|〈ψ1,ψ2〉| ≤ 3

√
C̃1(W, ε)e−

C̃2(W,ε)
2

N (C.4)

and ∥∥ΨHΨ
∥∥

2
≤ 1 + 3N

√
C̃1(W, ε)e−

C̃2(W,ε)N
2

if N ≥ Ñ0(W, ε), where

C̃1(W, ε) = max {C1(Wi, ε), ∀ i ∈ [J ]}, C̃2(W, ε) = min {C2(Wi, ε), ∀ i ∈ [J ]}.

Here ||ΨHΨ||2 is the spectral norm (or largest singular value) of ΨHΨ.

Lemma C.4. ([67]) LetX ∈ CN×N be a Hermitian matrix, and let λ0(X), λ1(X), . . . , λN−1(X)

be its eigenvalues arranged in decreasing order. Then,

λ0(X) + λ1(X) + . . .+ λr−1(X) = max
U∈CN×r,UHU=Ir

trace(UHXU),

where Ir is the r × r identity matrix with 1 ≤ r ≤ N .

Based on this result, we propose the following generalized result concerning the sum of

the first r eigenvalues.

Lemma C.5. Let X ∈ CN×N be a positive-semidefinite (PSD) matrix, and let λi(X), 0 ≤

i ≤ N − 1 be its eigenvalues arranged in decreasing order. Then, for any matrix M ∈

CN×r, 1 ≤ r ≤ N , the following inequality holds
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λ0(X) + λ1(X) + . . .+ λr−1(X) ≥ trace(MHXM)/‖MHM‖2.

Proof of Lemma C.5. Let σ0(M), . . . , σr−1(M) denote the decreasing singular values of the

matrix M . Denote M = UrΣrV
H
r as the truncated SVD of M , where Σr is an r × r

diagonal matrix with σ0(M ), . . . , σr−1(M) along its diagonal.

Now applying Lemma C.4, we obtain

r−1∑
l=0

λ`(X) ≥ trace(UH
r XUr)

≥ trace(ΣrU
H
r XUrΣr)/(σ0(M))2

= trace(VrΣrU
H
r XUrΣrV

H
r )/‖MHM‖2

= trace(MHXM)/‖MHM‖2,

where the first line follows directly from Lemma C.4, the second line is obtained because

UH
r XUr is PSD and hence its main diagonal elements are non-negative, and the third line

follows because Vr is an orthobasis and (σ0(M ))2 = ‖MHM‖2.

We are now ready to prove the main part. Fix ε ∈ (0, 1). Let ki = b2NWi(1−ε)c,∀i ∈ [J ],

and let Ψ be the dictionary as defined in (5.1). We have
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J−1+
∑
ib2NWi(1−ε)c∑
`=0

λ
(`)
N,W

≥ trace
(
ΨHBN,WΨ

)
/
∥∥ΨHΨ

∥∥
2

=

J−1∑
i=0

b2NWi(1−ε)c∑
li=0

(
(Efis

(`i)
N,Wi

)HIN(BW(I∗N(Efis
(`i)
N,Wi

)))
) /

∥∥ΨHΨ
∥∥

2

=

J−1∑
i=0

b2NWi(1−ε)c∑
li=0

((
Efis

(`i)
N,Wi

)H (
λ

(`i)
N,Wi

Efis
(`i)
N,Wi

+ o
(`i)
i

)) /
∥∥ΨHΨ

∥∥
2

≥

J−1∑
i=0

b2NWi(1−ε)c∑
li=0

(
λ

(`i)
N,Wi
− ‖o(`i)

i ‖2

) /
∥∥ΨHΨ

∥∥
2

≥

(∑J−1
i=0

∑b2NWi(1−ε)c
li=0

(
1− C1(Wi, ε)e

−C2(Wi,ε)N −
√

2
√
C1(Wi, ε)e

−C2(Wi,ε)

2
N
))

(
1 + 3N

√
C̃1(W, ε)e−

C̃2(W,ε)N
2

)

≥

(∑J−1
i=0

∑b2NWi(1−ε)c
li=0

(
1− C̃1(W, ε)e−C̃2(W,ε)N −

√
2

√
C̃1(W, ε)e−

C̃2(W,ε)
2

N

))
(

1 + 3N

√
C̃1(W, ε)e−

C̃2(W,ε)N
2

)
≥ J +

∑
ib2NWi(1− ε)c − 3NC5(W, ε)e−

C̃2(W,ε)
2

N

1 + 3NC5(W, ε)e−
C̃2(W,ε)N

2

=

(
J +

∑
ib2NWi(1− ε)c − 3NC5(W, ε)e−

C̃2(W,ε)
2

N
)(

1− 3NC5(W, ε)e−
C̃2(W,ε)N

2

)
(

1 + 3NC5(W, ε)e−
C̃2(W,ε)N

2

)(
1− 3NC5(W, ε)e−

C̃2(W,ε)N
2

)
≥
J +

∑
ib2NWi(1− ε)c − 6N2C5(W, ε)e−

C̃2(W,ε)
2

N +
(

3NC5(W, ε)e−
C̃2(W,ε)

2
N
)2

1−
(

3NC5(W, ε)e−
C̃2(W,ε)N

2

)2

≥ J +
∑
i

b2NWi(1− ε)c − 6N2C5(W, ε)e−
C̃2(W,ε)

2
N

for all N ≥ max{Ñ0(W, ε), N ′(W, ε)}, where

N ′(W, ε) = max{( 4

C2(W, ε)
)2,

4

C2(W, ε)
log(3C5(W, ε))}
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is the constant such that 3NC5(W, ε)e−
C̃2(W,ε)N

2 < 1 for all N ≥ N ′(W, ε).21 Here the first

line follows directly from Lemma C.5, the second line follows because trace
(
ΨHBN,WΨ

)
=

trace
(∑J−1

i=0 ΨH
i BN,WΨi

)
and BN,W is equivalent to INBWI∗N , the third line follows from

Lemma C.2, the fourth line follows from the Cauchy-Schwarz inequality which indicates that

|(Efis
(`i)
N,Wi

)Ho
(`i)
i | ≤ ||Efis

(`i)
N,Wi
||2||o(`i)

i ||2 = ||o(`i)
i ||2, the fifth line follows from Lemmas 2.1,

C.2 and C.3, the seventh line follows by setting C5(W, ε) = max{C̃1(W, ε),

√
C̃1(W, ε)}, the

ninth line follows because J +
∑

ib2NW (1 − ε)c ≤ N , and the last line follows because by

assumption 3NC5(W, ε)e−
C̃2(W,ε)N

2 < 1.

By noting that 0 < λ
(N−1)
N,W ≤ λ

(0)
N,W < 1 from Lemma 5.1, we acquire

λ
(`)
N,W =

J−1+
∑
ib2NWi(1−ε)c∑
`′=0

λ
(`′)
N,W

−
J−1+

∑
ib2NWi(1−ε)c∑

`′=0,`′ 6=l

λ
(`′)
N,W


≥

J−1+
∑
ib2NWi(1−ε)c∑
`′=0

λ
(`′)
N,W

−(J − 1 +
∑
i

b2NWi(1− ε)c

)

≥ 1− 6N2C5(W, ε)e−
C̃2(W,ε)

2
N

for all ` ≤ J−1+
∑

ib2NWi(1−ε)c, where the second line follows by setting λ(`′)
N,W, `

′ 6= l to 1.

Fix W and ε. It is always possible to find a constant N ′ such that 3NC5(W, ε)e−
C̃2(W,ε)N

2 < 1

for all N ≥ N ′. Now, for convenience, we set C1(W, ε) = 6C5(W, ε), C2(W, ε) = C̃2(W,ε)
2

, and

N0(W, ε) = max{Ñ0(W, ε), N ′}. This completes the proof of Theorem 5.3.

C.5 Proof of Theorem 5.4

First denote the eigen-decomposition of BN,W as

BN,W = UN,WΛN,WU
H
N,W,

21This can be verified as 3NC5(W, ε)e−
C̃2(W,ε)N

2 = 3C5(W, ε)e−N(
C̃2(W,ε)

2 − logN
N ) ≤ 3C5(W, ε)e−N

C̃2W,ε)
4 ≤ 1 for

all N ≥ max{( 4
C2(W,ε) )

2, 4
C2(W,ε) log(3C5(W, ε))}. Here the first inequality follows because logN

N ≤ 1
N1/2 ≤

C2(W,ε)
4 for all N ≥ ( 4

C2(W,ε) )
2.
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where ΛN,W is an N × N diagonal matrix whose diagonal elements are the eigenvalues

λ
(0)
N,W, λ

(1)
N,W, . . . , λ

(N−1)
N,W and UN,W is a square (N ×N) matrix defined by

UN,W := [u
(0)
N,W u

(1)
N,W . . . u

(N−1)
N,W ].

Also let a = UH
N,Wψ be the coefficients of ψ represented by UN,W.

Fix ε ∈ (0,min{1, 1
|W| − 1}). Suppose ψ is a column of Ψi for some particular i ∈ [J ].

Now from Lemma C.2, we have

BN,Wψ = λ
(`i)
N,Wi

ψ + o
(`i)
i

for some `i ≤ b2NWi(1− ε)c.

Plugging the eigen-decomposition of the matrix UN,W into the above equation, we require

ΛN,Wa = λ
(`i)
N,Wi

a+ ô
(`i)
i ,

where ô(`i)
i = UH

N,Wo
(`i)
i . The elementary form of the above equation is

λ
(m)
N,Wa[m] = λ

(`i)
N,Wi

a[m] + ô
(`i)
i [m]

for all m ∈ [N ].

Now we have

||ψ − PΦψ||22 =
N−1∑

m=
∑
id2NWi(1+ε)e

|a[m]|2 =
N−1∑

m=
∑
id2NWi(1+ε)e

∣∣∣ô(`i)
i [m]

∣∣∣2∣∣∣λ(`i)
N,Wi
− λ(m)

N,W

∣∣∣2
≤

∑N−1
m=

∑
id2NWi(1+ε)e

∣∣∣ô(`i)
i [m]

∣∣∣2(
1− C̃1(W, ε)e−C̃2(W,ε)N − C3(W, ε)e−C4(W,ε)N

)2

≤ ||o(`i)
i ||2(

1− C̃1(W, ε)e−C̃2(W,ε)N − C3(W, ε)e−C4(W,ε)N
)2

≤ 2C̃1(W, ε)e−C̃2(W,ε)N(
1− C̃1(W, ε)e−C̃2(W,ε)N − C3(W, ε)e−C4(W,ε)N

)2

(C.5)
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for all N ≥ max{N0(W, ε), N1(W, ε)}, where the second line follows by bounding the λ(`i)
N,Wi

term using 1 − C1(Wi, ε)e
−C2(Wi,ε)N (which is not less than 1 − C̃1(W, ε)e−C̃2(W,ε)N) from

Lemma 2.1 and bounding the λ(m)
N,W terms using Theorem 5.3, and the fourth line follows

because ||o(`i)
i ||2 ≤ 2C1(Wi, ε)e

−C2(Wi,ε)N ≤ 2C̃1(W, ε)e−C̃2(W,ε)N .

The following general result will help in extending (C.5) to an angle between the sub-

spaces.

Lemma C.6. Let SU and SV be the subspaces spanned by the columns of the matrices

U ∈ CN×q and V ∈ CN×r, respectively. Here r ≤ q ≤ N . Suppose each column of V is

normalized so that ‖v`‖2 = 1 and is close to SU such that for some δ1, ‖v` − PUv`‖2
2 ≤ δ1

for all ` ∈ [r]. Furthermore, suppose the columns of V are approximately orthogonal to each

other such that for some δ2, |〈vk,v`〉| ≤ δ2 for all k 6= l. Then we have

cos(ΘSUSV ) ≥

√
1− δ1 −N

(
δ2 +

√
δ1

)
1 +Nδ2

.

Proof of Lemma C.6. Any v ∈ SV can be written as a linear combination of v` in the form

v =
∑

` α`v`. We first bound the `2 norm of v by

‖v‖2
2 = ‖

r−1∑
`=0

α`v`‖2
2

=
r−1∑
`=0

|α`|2‖v`‖2
2 +

r−1∑
`=0

r−1∑
k=0,k 6=l

〈α`v`, αkvk〉

≤
r−1∑
`=0

|α`|2 +
r−1∑
`=0

r−1∑
k=0,k 6=l

|α`||αk|δ2

≤
r−1∑
`=0

|α`|2 +
r−1∑
`=0

r−1∑
k=0,k 6=l

|α`|2 + |αk|2

2
δ2

=

(
r−1∑
`=0

|α`|2
)

(1 + (r − 1)δ2) ≤

(
r−1∑
`=0

|α`|2
)

(1 +Nδ2) ,
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where the third line follows from the hypothesis that |〈vk,v`〉| ≤ δ2 for all k 6= l. Similarly,

‖PUv‖2
2 = ‖

r−1∑
`=0

PU (α`v`) ‖2
2 =

r−1∑
`=0

|α`|2‖PUv`‖2
2 +

r−1∑
`=0

r−1∑
k=0,k 6=l

〈α`PUv`, αkPUvk〉

=
r−1∑
`=0

|α`|2‖PUv`‖2
2 +

r−1∑
`=0

r−1∑
k=0,k 6=l

〈α`v`, αk (vk − (vk − PUvk))〉

≥
r−1∑
`=0

|α`|2 (1− δ1)−
r−1∑
`=0

r−1∑
k=0,k 6=l

|α`||αk|
(
δ2 +

√
δ1

)
=

(
r−1∑
`=0

|α`|2
)(

1− δ1 − (r − 1)
(
δ2 +

√
δ1

))
≥

(
r−1∑
`=0

|α`|2
)(

1− δ1 −N
(
δ2 +

√
δ1

))
,

where the fourth line follows because 〈v`,vk − PUvk〉 ≤ ‖v`‖2‖vk − PUvk‖2 ≤
√
δ1 and

|〈vk,v`〉| ≤ δ2 for all k 6= l.

Therefore, for any non-zero vector v ∈ SV we have

‖PUv‖2
2

‖v‖2
2

≥
1− δ1 −N

(
δ2 +

√
δ1

)
1 +Nδ2

.

Finally, (5.4) follows from Lemma C.6 by replacing U with Φ and V with Ψ, and

assigning δ1 with the upper bound in (C.5) and δ2 with the upper bound in (C.4).

C.6 Proof of Theorem 5.5

For each i ∈ [J ], define Ψi = [EfiSN,Wi

√
ΛN,Wi

]ki for some given ki ∈ {1, 2, . . . , N}. We

construct the scaled multiband modulated DPSS matrix Ψ by22

Ψ := [Ψ0 Ψ1 · · · ΨJ−1]. (C.6)

The main idea is to bound
∥∥∥PΨu

(`)
N,W

∥∥∥
2
using

∥∥∥Ψ Ψ
H
u

(`)
N,W

∥∥∥
2
. In order to use this argument,

we first give out some useful results.

22Hogan and Lakey [64] considered the scaled and shifted Prolate Spheroidal Wave Fuctions (PSWF’s) and
provided conditions on a shift parameter such that the scaled and shifted PSWF’s form a frame or a Riesz
basis for the Paley-Wiener space.
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Lemma C.7. Suppose Ψ is the matrix defined in (C.6) with some given ki ∈ {1, 2, . . . , N},∀i ∈

[J ]. Then ∥∥Ψ∥∥
2
≤ 1.

Proof of Lemma C.7. Let y ∈ CN . Then

∥∥∥ΨH
y
∥∥∥2

2
=

J−1∑
i=0

ki−1∑
li=0

∣∣∣∣〈y,Efi

√
λ

(`i)
N,Wi

s
(`i)
N,Wi

〉∣∣∣∣2

=
J−1∑
i=0

ki−1∑
li=0

〈
y,Efi

√
λ

(`i)
N,Wi

s
(`i)
N,Wi

〉〈
Efi

√
λ

(`i)
N,Wi

s
(`i)
N,Wi

,y

〉

=
J−1∑
i=0

ki−1∑
li=0

yHEfis
(`i)
N,Wi

λ
(`i)
N,Wi

(s
(`i)
N,Wi

)HEH
fi
y

≤
J−1∑
i=0

N−1∑
li=0

yHEfis
(`i)
N,Wi

λ
(`i)
N,Wi

(s
(`i)
N,Wi

)HEH
fi
y

=
J−1∑
i=0

yHEf`IN(BWi
(I∗N(EH

fi
y))) =

J−1∑
i=0

〈IN(BWi
(I∗N(EH

fi
y))),EH

fi
y〉

=
J−1∑
i=0

〈BWi
(I∗N(EH

fi
y)), I∗N(EH

fi
y)〉 =

J−1∑
i=0

∥∥BWi
(I∗N(EH

fi
y))
∥∥2

2

=
J−1∑
i=0

∫ fi+Wi

fi−Wi

|ỹ(f)|2df =

∫ 1/2

−1/2

(
J−1∑
i=0

1[fi−Wi,fi+Wi)(f)

)
|ỹ(f)|2df,

where the fourth line follows because

yHEfis
(`i)
N,Wi

λ
(`i)
N,Wi

(s
(`i)
N,Wi

)HEH
fi
y =

∥∥∥∥√λ
(`i)
N,Wi

(s
(`i)
N,Wi

)HEH
fi
y

∥∥∥∥2

2

≥ 0,

the fifth line follows because
∑N−1

`i=0 s
(`i)
N,Wi

λ
(`i)
N,Wi

(s
(`i)
N,Wi

)Hx = IN(BWi
(I∗N(x))), and we use

ỹ(f) =
∑N−1

n=0 y[n]e−j2πfn as the DTFT of I∗N(y) in the last three equations.

Noting that
∑J−1

i=0 1[fi−Wi,Wi+fi)(f) ≤ 1 for all f ∈ [−1
2
, 1

2
] since we assume there is no

overlap between each interval [fi −Wi,Wi + fi), we conclude∥∥∥ΨH
y
∥∥∥2

2
≤
∫ 1/2

−1/2

|ỹ(f)|2df = ‖y‖2
2
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and

||Ψ||2 ≤ 1.

Lemma C.8. For any ki ∈ {1, 2, . . . , N}, i ∈ [J ], let Ψ and Ψ be the matrices defined in

(5.1) and (C.6) respectively. Then for any y ∈ CN×1,

||PΨy||2 ≥ ||Ψ Ψ
H
y||2. (C.7)

Proof of Lemma C.8. Let Ψ = UΨΣΨV
H
Ψ

be a reduced SVD of Ψ, where both UΨ and

VΨ are orthonormal matrices of the proper dimension, and ΣΨ is a diagonal matrix whose

diagonal elements are the non-zero singular values of Ψ. We have

||Ψ Ψ
H
y||2 = ||UΨΣ2

Ψ
UH

Ψ
y||2

≤ ||UH
Ψ
y||2

= ||UΨU
H
Ψ
y||2

= ||PΨy||2

where the second lines follows because ||Ψ||2 ≤ 1 and hence the diagonal elements ΣΨ are

bounded above by 1, and the fourth line follows because each column in Ψ is in also Ψ and

hence ||PΨy||2 = ||PUΨ
y||2.

Now we turn to prove Theorem 5.5. By (C.7), we observe that

∥∥∥PΨu
(`)
N,W

∥∥∥
2
≥
∥∥∥Ψ Ψ

H
u

(`)
N,W

∥∥∥
2

=

∥∥∥∥∥
J−1∑
i=0

ki−1∑
`i=0

Efis
(`i)
N,Wi

λ
(`i)
N,Wi

(s
(`i)
N,Wi

)HEH
fi
u

(`)
N,W

∥∥∥∥∥
2

=

∥∥∥∥∥BN,Wu
(`)
N,W −

J−1∑
i=0

N−1∑
`i=ki

Efis
(`i)
N,Wi

λ
(`i)
N,Wi

(s
(`i)
N,Wi

)HEH
fi
u

(`)
N,W

∥∥∥∥∥
2

≥
∥∥∥BN,Wu

(`)
N,W

∥∥∥
2
−

J−1∑
i=0

N−1∑
`i=ki

∥∥∥Efis
(`i)
N,Wi

λ
(`i)
N,Wi

(s
(`i)
N,Wi

)HEH
fi
u

(`)
N,W

∥∥∥
2
≥ λ

(`)
N,W −

J−1∑
i=0

N−1∑
li=ki

λ
(`i)
N,Wi

.
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C.7 Proof of Corollary 5.1

It follows from Theorem 5.5 that

∥∥∥PΨu
(`)
N,W

∥∥∥
2
≥ λ

(`)
N,W −

J−1∑
i=0

N−1∑
li=ki

λ
(`i)
N,Wi

≥ 1− C1(W, ε)N2e−C2(W,ε)N −
J−1∑
i=0

N−1∑
li=ki

C3(Wi, ε)e
−C4(Wi,ε)N

≥ 1− C1(W, ε)N2e−C2(W,ε)N −
J−1∑
i=0

N−1∑
li=ki

1

J
C3(W, ε)e−C4(W,ε)N

≥ 1− C1(W, ε)N2e−C2(W,ε)N −NC3(W, ε)e−C4(W,ε)N

for all N ≥ max{N0(W, ε), N1(W, ε)}, where the second line follows by bounding the

λ
(`)
N,W term using Theorem 5.3 and by bounding the λ(`i)

N,Wi
terms using Lemma 2.1, and

the third line follows because C3(W, ε) = J max {C3(Wi, ε), ∀ i ∈ [J ]} and C4(W, ε) =

min {C4(Wi, ε), ∀ i ∈ [J ]}.

Let κ2(N,W, ε) = C1(W, ε)N2e−C2(W,ε)N+NC3(W, ε)e−C4(W,ε)N . Then ||u(`)
N,W−PΨu

(`)
N,W||22 ≤

2κ2(N,W, ε) − κ2
2(N,W, ε). Noting also that 〈u(`)

N,W,u
(k)
N,W〉 = 0 for all k 6= l, (5.5) follows

directly from Lemma C.6.

C.8 DTFT of DPSS vectors

The results presented in this appendix are useful in Appendix C.9, where we analyze

the performance of the DPSS vectors for representing sampled pure tones inside the band

of interest. Let s̃(`)
N,W (f) denote the DTFT of the sequence TN(s

(`)
N,W ), i.e., s̃(`)

N,W (f) =∑N−1
n=0 s

(`)
N,W [n]e−j2πfn. Figure C.1 shows s̃(`)

N,W (f) for all ` ∈ [N ] with N = 1024 and W = 1
4
.

We observe that the first ≈ 2NW DPSS vectors have their spectrum mostly concentrated

in [−W,W ], only a small fraction of DPSS vectors whose indices are near 2NW have a

relatively flat spectrum over [−1
2
, 1

2
], and the remaining DPSS vectors have their spectrum

mostly concentrated outside of the band [−W,W ]. This phenomenon is captured formally

in the asymptotic expressions for λ(`)
N,W and s̃(`)

N,W (f) from [118].
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Figure C.1: Illustration of
∣∣∣s̃(`)
N,W (f)

∣∣∣2, or the energy in {ef} captured by each DPSS vector.
The horizontal axis stands for the digital frequency f , which ranges over [−1

2
, 1

2
], while the

vertical axis stands for the index ` ∈ [N ]. The `-th horizontal line shows 10 log10

∣∣∣s̃(`)
N,W (f)

∣∣∣2.
Here N = 1024 and W = 1

4
.

Lemma C.9. ([118]) Fix W ∈ (0, 1
2
) and ε ∈ (0, 1). Let α := 1− A = 1− cos 2πW .

1. For fixed `, as N →∞, we have

1− λ(`)
N,W ∼ c2

5/
(

2
√

2α
)

and

s̃
(`)
N,W (f) ∼

 c3f4(f), W ≤ |f | ≤ arccos(A−N−3/2)/2π,

c5f5(f), arccos(A−N−3/2)/2π ≤ |f | ≤ 1/2.

Here
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c5 = (`!)−1/2π1/42(14`+15)/8α(2l+3)/8N (2`+1)/4(
√

2 +
√
α)−N(2− α)(N−`−1/2)/2

= (`!)−1/2π1/42(14`+15)/8α(2l+3)/8N (2`+1)/4(2− α)−(`+1/2)/2e−
γ
2
N ,

c3 = π1/22−1/2α−1/4[2− α]−1/4N1/2c5 = O(N1/2)c5,

γ = log(1 +
2
√
α√

2−
√
α

),

f4(f) = J0

(
N√

2− α
√
A− cos (2πf)

)
,

f5(f) =
cos
(
N
2

arcsin (θ(f)) + 1
2
(l + 1

2
) arcsin (φ(f)) + (l −N)π

4
+ 3π

8

)
((A− cos (2πf))(1− cos (2πf)))1/4

,

θ(f) =
α + 2 cos (2πf)

2− α
, φ(f) =

(2− 3α)− (2 + α) cos (2πf)

(2− α)(1− cos (2πf))
,

where J0 is the Bessel function of the first kind.

2. As N →∞ and with ` = b2NW (1− ε′)c for any ε′ ∈ (0, ε], we have

1− λ(`)
N,W ∼ 2πL−1

2 d2
6

and

s̃
(`)
N,W (f) ∼

 d4g5(f), W ≤ |f | ≤ arccos(A−N−1)/2π,

d6g6(f), arccos(A−N−1)/2π ≤ |f | ≤ 1/2.

Here

d6 = (L2)−1/2π1/221/2e−CL4/4e−NL3/2,

d4 = (L2)−1/2π(1− A2)−1/4e−CL4/4e−NL3/2N1/2,

g5(f) = J0

(
N

√
B − A
1− A2

(cos(2πf)− A)

)
,

g6(f) = R(f) cos

(
πN

∫ 1/2

f

√
B − cos(2πt)

A− cos(2πt)
dt

+
πC

2

∫ 1/2

f

dt√
(B − cos(2πt)) (A− cos(2πt))

+ θ

)
,
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R(f) = |(B − cos(2πf)) (A− cos(2πf))|−1/4 ,

C =
1

L2

mod

(
N

2
L1 +

(
2 + (−1)l

) π
4
, 2π

)
,

θ = mod

(
π

4
− N

2
L5 −

C

4
L6, 2π

)
,

L1 =

∫ 1

B

P (ξ)dξ, L2 =

∫ 1

B

Q(ξ)dξ, L3 =

∫ B

A

P (ξ)dξ, L4 =

∫ B

A

Q(ξ)dξ

L5 =

∫ A

−1

P (ξ)dξ, L6 = L2,

P (ξ) =

∣∣∣∣ ξ −B
(ξ − A) (1− ξ2)

∣∣∣∣1/2 , Q(ξ) =
∣∣(ξ −B) (ξ − A)

(
1− ξ2

)∣∣−1/2
,

where B is determined so that
∫ 1

B

√
ξ−B

(ξ−A)(1−ξ2)
dξ = l

N
π and mod (y, 2π) returns the

remainder after division of y by 2π.

C.9 Proof of Theorem 5.6

Noting that SN,W forms an orthobasis for CN×N , the main idea is to show that the DPSS

vectors s(2NW (1+ε))
N,W , s

(2NW (1+ε)+1)
N,W , . . . , s

(N−1)
N,W have their spectrum most concentrated outside

of the band [−W,W ].

Since the sequence s(`)
N,W is exactly bandlimited to the frequency range |f | ≤ W , we

know that its DTFT s̃
(`)
N,W (f) :=

∑∞
n=−∞ s

(`)
N,W [n]ej2πfn vanishes for all W < |f | < 1

2
. By

noting that the first ≈ 2NW DPSS’s are also approximately time-limited to the index range

n = 0, 1, . . . , N−1, we may expect that s̃(`)
N,W (f) :=

∑N−1
n=0 s

(`)
N,W [n]ej2πfn is also approximately

0 for all W < |f | < 1
2
and ` ≤ 2NW (1 − ε). This illustrates informally why the DTFT of

the first ≈ 2NW DPSS vectors is concentrated inside the band [−W,W ]. By employing the

antisymmetric property [118] which states that |s̃(`)
N,W (f)| = |s̃(N−1−`)

N, 1
2
−W (1

2
− f)|, we then have

that the DPSS vectors s(2NW (1+ε))
N,W , s(2NW (1+ε)+1)

N,W , . . . , s(N−1)
N,W are almost orthogonal to any

sinusoid with frequency inside the band [−W,W ].
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Recall that s̃(`)
N,W (f) is the DTFT of the sequence TN(s

(`)
N,W ). We have

〈s(`)
N,W , ef〉 = s̃

(`)
N,W (f),

for all ` ∈ [N ]. As we have observed in Figure C.1, the spectrum of the first ≈ 2NW DPSS

vectors is approximately concentrated on the frequency interval [−W,W ]. This behavior is

captured formally in the following results.

Corollary C.1. Let A = cos 2πW . For fixed W ∈ (0, 1
2
) and ε ∈ (0,min( 1

2W
− 1, 1)), there

exists a constant C6(W, ε) (which may depend on W and ε) such that

|s̃(`)
N,W (f)| ≤ C6(W, ε)N3/4e−

C2(W,ε)
2

N , W ≤ |f | ≤ 1/2

for all N ≥ N0(W, ε) and ` ≤ 2NW (1 − ε). Here C2(W, ε) and N0(N, ε) are constants

specified in Lemma 2.1.

Proof of Corollary C.1. The main approach is to bound s̃(`)
N,W (f), W ≤ |f | ≤ 1/2 with the

expressions presented in Lemma C.9. Suppose ε ∈ (0, 1) is fixed.

• For fixed ` and large N :

In order to quantify the decay rate of |s̃(`)
N,W (f)|, we exploit some results concerning of

f4(f) from [100] and f5(f) as follows:

|J0(x)| ≤ 1, ∀ x ≥ 0, (C.8)

and for any arccos(A−N−3/2)
2π

≤ |f | ≤ 1/2, one may verify that

|f5(f)| ≤ 1

((A− cos (2πf))(1− cos (2πf)))1/4

≤ 1

((A− (A−N−3/2)) (1− (A−N−3/2)))
1/4

≤ 1

((N−3/2))(N−3/2)))
1/4

= N3/4,
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where the last line follows because 1− A ≥ 0.

Recall that c3 = π1/22−1/2α−1/4 (2− α)−1/4N1/2c5 and c5 ∼
√

2
√

2α
(

1− λ(`)
N,W

)
. Plug-

ging these into Lemma C.9 and utilizing Lemma 2.1, we get the exponential decay of

|s̃(`)
N,W (f)|, |f | ≥ W as

|s̃(`)
N,W (f)| ≤

 C ′7(W, ε)N1/2e−
C2
2
N , W ≤ |f | ≤ arccos

(
A−N−3/2

)
/2π,

C ′8(W, ε)N3/4e−
C2
2
N , arccos

(
A−N−3/2

)
/2π ≤ |f | ≤ 1/2,

for fixed ` andN ≥ N0(W, ε). Here C ′7(W, ε) = π1/221/4 (2− α)−1/4
√
C1(W, ε), C ′8(W, ε) =

(2
√

2αC1(W, ε))1/2, and N0(W, ε), C1(W, ε) and C2(W, ε) are constants as specified in

Lemma 2.1.

• For large N and ` = b2NW (1− ε′)c, ∀ ε′ ∈ (0, ε]:

Note that
∫ 1

B

√
ξ−B

(ξ−A)(1−ξ2)
dξ is a decreasing function of B and

∫ 1

A

√
ξ−A

(ξ−A)(1−ξ2)
dξ =

2Wπ > l
N
π. Hence 1 > B > A. Now we have

|g6(f)| ≤ |R(f)| ≤ 1

(A− cos(2πf))1/2
≤ 1

(A− (A−N−1))1/2
≤ N1/2

for all arccos(A−N−1)/2π ≤ |f | ≤ 1/2.

Recall that |g5(f)| ≤= 1 from (C.8), d4 = π1/2(1 − A2)−1/42−1/2N1/2d6 and d6 ∼√
1−λ(`)

N,W

2π
. Plugging these into Lemma C.9 and utilizing the bound on λ(`)

N,W in Lemma 2.1,

we get the exponential decay of |s̃(`)
N,W (f)|, |f | ≥ W as

|s̃(`)
N,W (f)| ≤

 C ′′7 (W, ε)N1/2e−
C2
2
N , W ≤ |f | ≤ arccos[A−N−1]/2π,

C ′′8 (W, ε)N1/2e−
C2
2
N , arccos[A−N−1]/2π ≤ |f | ≤ 1/2,

for all ` = b2NW (1 − ε′)c, ∀ ε′ ∈ (0, ε] and N ≥ N0(W, ε). Here C ′′8 (W, ε) =√
C1(W, ε)/2π, C ′′7 (W, ε) = 2−1(1 − A2)−1/4

√
C1(W, ε), and N0(W, ε), C1(W, ε) and

C2(W, ε) are constants as specified in Lemma 2.1.
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Set

C6(W, ε) = max {C ′7(W, ε), C ′8(W, ε), C ′′7 (W, ε), C ′′8 (W, ε)}

= max

{
π1/2

(
2

2− α

)1/4

, 2−1(1− A2)−1/4

}√
C1(W, ε).

This completes the proof of Corollary C.1.

Lemma C.10. ([118]) For fixed W ∈ (0, 1
2
) and ε ∈ (0, 1

2W
− 1), s̃(`)

N,W (f) and s̃(N−1−`)
N, 1

2
−W (f)

satisfy

|s̃(`)
N,W (f)| = |s̃(N−1−`)

N, 1
2
−W (

1

2
− f)|

for all ` ≥ 2NW (1 + ε).

Now we can conclude that 〈ef , s(`)
N,W 〉 decays exponentially in N for all ` ≥ 2NW (1 + ε)

and |f | ≤ W by combining the above results.

Corollary C.2. Fix W ∈ (0, 1
2
) and ε ∈ (0, 1

2W
− 1). Let W ′ = 1

2
−W and ε′ = W

1
2
−W ε. Then

|〈ef , s(`)
N,W 〉| = |s̃

(`)
N,W (f)| ≤ C6(W ′, ε′)N3/4e−

C2(W ′,ε′)
2

N , ∀|f | ≤ W

for all N ≥ N0(W ′, ε′) and all ` ≥ 2NW (1+ε). Here, C2(W ′, ε′) and N0(W ′, ε′) are constants

specified in Lemma 2.1 with respect to W ′ and ε′, and C6(W ′, ε′) is the constant specified in

Corollary C.1 with respect to W ′ and ε′.

Proof of Corollary C.2. Let `′ = N − 1− `. For all ` ≥ 2NW (1 + ε), we have

`′ = N − 1− ` ≤ N − 2NW (1 + ε) = 2N(
1

2
−W )(1− W

1
2
−W

ε).

Let W ′ = 1
2
−W and ε′ = W

1
2
−W ε ∈ (0, 1). It follows from from Corollary C.1 and Lemma

C.10 that

|〈ef , s(`)
N,W 〉| = |〈e 1

2
−f , s

(`′)
N,W ′〉| ≤ C6(W ′, ε′)N3/4e−

C2(W ′,ε′)
2

N , ∀ |f | ≤ W
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for all N ≥ N0(W ′, ε′).

Recall that C6(W ′, ε′) = max
{
π1/2

(
2
α

)1/4
, 2−1(1− A2)−1/4

}√
C1(W ′, ε′), A = cos(2πW )

and α = 1 − A. As W gets closer to 0 or 1
2
, the variable (1 − A2)−1/4 becomes larger, and

we have (1 − A2)−1/4 → 1/
√

2πW as W → 0. Also we have
(

2
α

)1/4 → 1/
√
πW as W → 0.

Therefore, for any non-negligible bandwidth which is the main assumption in this paper, the

variable max
{
π1/2

(
2
α

)1/4
, 2−1(1− A2)−1/4

}√
C1(W ′, ε′) would not be too large.

Now, for fixed W ∈ (0, 1
2
) and ε ∈ (0, 1

2W
− 1), we have

||ef − P[SN,W ]kef ||
2
2 =

N−1∑
l=2NW (1+ε)

|〈ef , s(`)
N,W 〉|

2

≤
N−1∑

l=2NW (1+ε)

C2
6(W ′, ε′)N3/2e−C2(W ′,ε′)N

≤ C9(W ′, ε′)N5/2e−C2(W ′,ε′)N

for all |f | ≤ W and N ≥ N0(W ′, ε′), where C9(W ′, ε′) = C2
6(W ′, ε′).

C.10 Proof of Corollary 5.2

Suppose f ∈ [fi −Wi, fi +Wi] for some particular i ∈ [J ]. Denote by

C10(W, ε) = max{C9(W ′
i , ε
′),∀i ∈ [J ]}, C11(W, ε) = min{C2(W ′

i , ε
′),∀i ∈ [J ]}.

It follows from Theorem 5.6 that

||ef − PΨef ||22 ≤ ||ef − P[EfiSN,Wi ]2NWi(1+ε)
ef ||22

= ||ef−fi − P[SN,Wi ]2NWi(1+ε)
ef−fi ||22

≤ C9(W ′
i , ε
′)N5/2e−C2(W ′i ,ε

′)N ≤ C10(W, ε)N5/2e−C11(W,ε)N

for all N ≥ N0(W ′
i , ε
′). We complete the proof by setting N2(W, ε) = max{N0(W ′

i , ε
′),∀i ∈

[J ]}.

C.11 Proof of Theorem 5.7

We first present the following useful result from [32].
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Theorem C.1. ([32] Theorem 4.2) Suppose x is a continuous, zero-mean, wide sense sta-

tionary random process with power spectrum

Px(F ) =


1

Bband
, F ∈ [Fc − Bband

2
, Fc + Bband

2
],

0, otherwise.

Let x = [x(0) x(Ts) . . . x((N − 1)Ts)]
T ∈ CN denote a finite vector of samples acquired

from x(t) with a sampling interval of Ts ≤ 1/(2 max{|Fc ± Bband
2
|}). Let fc = FcTs and

W = BbandTs
2

. We will have

E
[
||x− PQx||22

]
=

1

2W

∫ fc+W

fc−W
||ef − PQef ||22df =

1

2W

N−1∑
l=k

λ
(l)
N,W .

Furthermore, for fixed ε ∈ (0, 1
2W
− 1), set k = 2NW (1 + ε). Then

E
[
||x− PQx||22

]
≤ C3(W, ε)

2W
Ne−C4(W,ε)N (C.9)

for all N ≥ N1(W, ε), where N1(W, ε), C3(W, ε), C4(W, ε) are constants specified in Lemma

2.1. For comparison, E [||x||22] = ||ef ||22 = N .

Since x0,x1, . . . ,xJ−1 are independent and zero-mean, we have

E
[
‖x‖2

2

]
=

N−1∑
n=0

E
[
|x[n]|2

]
=

N−1∑
n=0

∑
0≤i,i′≤J−1

E
[
xi[n]x′i[n]

]
=

N−1∑
n=0

J−1∑
i=0

E
[
|xi[n]|2

]
= N

J−1∑
i=0

1

J
= N.

Applying Theorem C.1, we acquire

E

[∥∥∥∥xi − P[EfiSN,Wi ]ki
x

∥∥∥∥2

2

]
=

1

|W|

N−1∑
l=ki

λ
(`)
N,Wi

.

Note that the power spectrum Pxi(F ) assumed in (5.7) results in the constant 1
|W| instead of

1
2Wi

.
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Now, we have

E
[
‖x− PΨx‖2

2

]
= E

∥∥∥∥∥
J−1∑
i=0

xi − PΨ(
J−1∑
i=0

xi)

∥∥∥∥∥
2

2

 = E

∥∥∥∥∥
J−1∑
i=0

(xi − PΨxi)

∥∥∥∥∥
2

2


= E

[(
J−1∑
i=0

(xi − PΨxi)
H

)(
J−1∑
i=0

(xi − PΨxi)

)]

= E

[
J−1∑
i=0

‖xi − PΨxi‖2
2 +

J−1∑
i=0

J−1∑
i′=0,i′ 6=i

(xi − PΨxi)
H (xi′ − PΨxi′)

]

=
J−1∑
i=0

E
[
‖xi − PΨxi‖2

2

]
+

J−1∑
i=0

J−1∑
i′=0,i′ 6=i

E
[
(xi − PΨxi)

H (xi′ − PΨxi′)
]

=
J−1∑
i=0

E
[
‖xi − PΨxi‖2

2

]
+

J−1∑
i=0

J∑
i′=0,i′ 6=i

E
[
xHi xi′ − xHi PΨxi′

]
=

J−1∑
i=0

E
[
‖xi − PΨxi‖2

2

]
≤

J−1∑
i=0

E
[∥∥∥xi − P[EfiSN,Wi ]ki

xi

∥∥∥2

2

]

=
J−1∑
i=0

1

|W|

N−1∑
l=ki

λ
(`)
N,Wi

where the equality in the sixth line follows because E
[
xHi′ xi

]
= (E [xi′ ])

H (E [xi]) = 0 and

E
[
xHi′ PΨxi

]
= (E [xi′ ])

H (E [PΨxi]) = 0 for all i′, i ∈ [J ], i′ 6= i, and the inequality in the

sixth line follows because the column space of [EfiSN,Wi
]ki is inside the column space of Ψ

for all i ∈ [J ].

C.12 Proof of Corollary 5.3

It is useful to express the sampled bandpass signal x as

x =

∫
W
x̃(f)ef d f, (C.10)

where we recall that x̃(f) denotes the DTFT of x[n], which is the infinite-length sequence

that one obtains by uniformly sampling x(t) with sampling rate Ts.

Now it follows from (C.10) that
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‖x− PΨx‖2
2 =

∥∥∥∥∫
W
x̃(f)efdf −

∫
W
x̃(f)PΨefdf

∥∥∥∥2

2

=

∥∥∥∥∫
W
x̃(f)(ef − PΨef )df

∥∥∥∥2

2

≤
∫
W
|x̃(f)|2df ·

∫
W
‖ef − PΨef‖2

2df

≤
∫
W
|x̃(f)|2df · C10(W, ε)N5/2e−C11(W,ε)N ,

where the third line follows from the Cauchy-Schwarz inequality and the last line follows

from (5.6) and the fact that
∫
W ‖ef−PΨef‖2

2df ≤ |W| supf∈W ‖ef−PΨef‖2
2 ≤ supf∈W ‖ef−

PΨef‖2
2.
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APPENDIX D

PROOFS FOR CHAPTER 6

This appendix contains the proofs for Chapter 6. Let essR (·) be the essential range of

a function. For any Ω ⊂ R, let int (Ω) be the interior of the set Ω.

D.1 Proof of Theorem 6.2

We first provide a strong condition under which the equal distribution of two sequences

is equivalent to individual asymptotic equivalence. Its proof is deferred to Appendix D.6.

Theorem D.1. Assume that the sequences {{uN,l}l∈[N ]}∞N=1 and {{vN,l}l∈[N ]}∞N=1 are abso-

lutely bounded , i.e., there exist a′, b′ such that b′ ≥ uN,0 ≥ uN,1 ≥ · · · ≥ uN,N−1 ≥ a′ and

b′ ≥ vN,0 ≥ vN,1 ≥ · · · ≥ vN,N−1 ≥ a′ for all N ∈ N. Furthermore, suppose there exists a

non-constant continuous function g(x) : [c, d]→ R such that

lim
N→∞

uN,0 = lim
N→∞

vN,0 = max
x∈[c,d]

g(x),

lim
N→∞

uN,N−1 = lim
N→∞

vN,N−1 = min
x∈[c,d]

g(x),

and

lim
N→∞

1

N

N−1∑
l=0

ϑ(uN,l) =
1

d− c

∫ d

c

ϑ(g(x))dx <∞

for every function ϑ that is continuous on [a, b], where [a,b] is the smallest interval that

covers [a′, b′] and the range of g(x). Then the following are equivalent:

lim
N→∞

1

N

N−1∑
l=0

(ϑ(uN,l)− ϑ(vN,l)) = 0; (D.1)

lim
N→∞

max
l∈[N ]
|uN,l − vN,l| = 0. (D.2)
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If h̃(f) ≡ C is a constant function, then HN and CN are diagonal matrices with all

diagonals being C for all CN ∈
{
C̃N , ĈN ,CN

}
and N ∈ N. Thus λl (HN) = λl (CN) = C

for all l ∈ [N ] and CN ∈
{
C̃N , ĈN ,CN

}
. The following result establishes the range of the

eigenvalues of CN and HN for the case when h̃(f) is not a constant function.

Lemma D.1. Suppose that h̃ ∈ L∞([0, 1]) and h̃ is not a constant function. Also let λl(CN)

be permuted such that λρ(0)(CN) ≥ λρ(1)(CN) ≥ · · · ≥ λρ(N−1)(CN). Then

ess inf h̃ < λN−1(HN) < λρ(N−1)(CN)

and

λρ(0)(CN) ≤ λ0(HN) < ess sup h̃.

Proof of Lemma D.1. We first rewrite λl
(
CN

)
as

λl
(
CN

)
=

N−1∑
n=0

c[n]e
−j2πln
N

=
N−1∑
n=0

1

N
((N − n)h[−n] + nh[N − n]) e

−j2πln
N

=

〈
HN

1√
N
el/N ,

1√
N
el/N

〉
.

By definition, λ0(HN) = max‖v‖2=1〈HNv,v〉 and λN−1(HN) = min‖v‖2=1〈HNv,v〉, we

obtain

λN−1(HN) ≤ λl(CN) ≤ λ0(HN), ∀ l.

For arbitrary v ∈ CN , ‖v‖2 = 1, we extend v to an infinite sequence v[n], n ∈ Z by zero-

padding. Then
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〈HNv,v〉 =
N−1∑
m=0

v∗[m]
N−1∑
n=0

h[m− n]v[n]

=
∞∑

m=−∞

v∗[m]
∞∑

n=−∞

h[m− n]v[n]

=

∫ 1

0

|ṽ(f)|2 h̃(f)df

where ṽ(f) =
∑N−1

n=0 v[n]ej2πfn. If h̃(f) is not a constant function of [0, 1], we conclude

ess inf h̃ =

∫ 1

0

|ṽ(f)|2 df · ess inf h̃ < 〈HNv,v〉

<

∫ 1

0

|ṽ(f)|2 df · ess sup h̃ = ess sup h̃.

Theorem 6.2 holds trivially when h̃(f) is a constant function since for this case HN and

CN have the same eigenvalues for all CN ∈
{
C̃N , ĈN ,CN

}
and N ∈ N. In what follows,

we suppose h̃(f) is not a constant function. The assumption of absolute summability of the

sequence h[k] indicates that its DTFT h̃(f) is continuous on [0, 1], and moreover, its partial

Fourier sum SN(f) converges uniformly to h̃(f) on [0, 1] as N →∞ [77]. Thus, given ε > 0,

there exists N0 ∈ N such that

∣∣∣h̃(f)− SN−1(f)
∣∣∣ ≤ ε

for all f ∈ [0, 1] and N ≥ N0. The Cesàro sum σN(f) also converges to h̃(f) uniformly on

[0, 1] as N →∞.

Since the eigenvalues of C̃N and ĈN are, respectively, the samples of SN−1(f) and

SbN−1
2 c(f), we conclude that C̃N and ĈN are absolutely bounded. Lemma D.1 implies

that CN and HN are also absolutely bounded.

We next show limN→∞maxl λl (CN) = maxf∈[0,1] h̃(f) for all CN ∈
{
C̃N , ĈN ,CN

}
. The

extreme value theorem states that h̃(f) must attain a maximum and a minimum each at
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least once since h̃(f) ∈ R is continuous on [0, 1]. Let

f̂ := arg max
f

h̃(f)

denote any point at which h̃ achieves its maximum value. Also let

l̂N := arg min
l∈[N ]

∣∣∣∣f̂ − l

N

∣∣∣∣
denote any closest on-grid point to f̂ . For arbitrary ε > 0, by uniform convergence, there

exists N0 such that ∣∣∣∣∣λl̂N (CN)− h̃

(
l̂N
N

)∣∣∣∣∣ ≤ ε

for all N ≥ N0. Noting that
∣∣∣ l̂NN − f̂ ∣∣∣ ≤ 1

2N
and h̃ is continuous on [0, 1], there exists N1 ∈ N

so that ∣∣∣∣∣h̃(f̂)− h̃
(
l̂N
N

)∣∣∣∣∣ ≤ ε

when N ≥ N1. Thus we conclude

∣∣∣λl̂N (CN)− h̃
(
f̂
)∣∣∣ ≤ 2ε

for all N ≥ max {N0, N1}. Since ε is arbitrary,

lim
N→∞

max
l
λl (CN) = max

f∈[0,1]
h̃(f)

for all CN ∈
{
C̃N , ĈN ,CN

}
. Noting that λl

(
CN

)
≤ λ0(HN) ≤ maxf∈[0,1] h̃(f), we obtain

lim
N→∞

max
l
λl (HN) = max

f∈[0,1]
h̃(f).
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The asymptotic argument for the smallest eigenvalues can be obtained with a similar ap-

proach. It follows from Lemma 6.1 that HN ∼ ĈN ∼ C̃N ∼ CN and from Szegő’s theo-

rem (2.23) that

lim
N→∞

1

N

N−1∑
l=0

ϑ(λl(HN)) =

∫ 1

0

ϑ(h̃(f))df.

Finally, the proof of Theorem 6.2 is completed by applying Theorem D.1 with g = h̃.

D.2 Proof of Theorem 6.3

We first outline the main idea. Let [HN ]N−r be the (N − r)× (N − r) matrix obtained

by deleting the last r columns and the last r rows ofHN . Similar notation holds for [C̃N ]N−r.

Note that [H ]N−r and [C̃N ]N−r have the same eigenvalues when N > 2r since [H ]N−r is

exactly the same as [C̃N ]N−r. Also ĈN is equivalent to C̃N when N > 2r. We first apply the

Sturmian separation theorem for the Toeplitz and circulant matrices to obtain a bound on

the distance between λl(HN) and λρ(l)(C̃N). We then utilize the fact that h̃(f) is Lipschitz

continuous to guarantee the closeness between λl(C̃N) and λl+r(C̃N). Finally, we show

λl(C̃N) is close to λl(CN) since the Cesàro sum and partial Fourier sum converge to the

same function in this case.

In order to prove Theorem 6.3, we establish the following useful results.

Lemma D.2. Let u0, u1, . . . , uN−1 ∈ R be an unordered sequence of N elements. We

decreasingly arrange this sequence so that uρ(0) ≥ uρ(1) ≥ · · · ≥ uρ(N−1). Then for any

r ∈ {1, 2 . . . , N − 1}, we have

max
1≤r′≤r

max
l∈[N−r′−1]

uρ(l) − uρ(l+r′) ≤ max
1≤r′≤r

max
l∈[N−r′−1]

|ul − ul+r′| .

Proof of Lemma D.2. The proof is straightforward for the case r = 1. If the sequence is

constant, then

max
l∈[N−2]

uρ(l) − uρ(l+1) = max
l∈[N−2]

|ul − ul+1| = 0.
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Suppose the sequence is not constant, i.e., there exist at least l1, l2 ∈ [N ] so that ul1 6= ul2 .

Let

l′ = arg max
l∈[N−2]

uρ(l) − uρ(l+1)

denote any point at which uρ(l)−uρ(l+1) achieves its maximum. Search the sequence {ul}l∈[N ]

to find ul′′ that is smaller than uρ(l′) and its index l′′ is closest to ρ(l′). Thus

max {|ul′′ − ul′′+1| , |ul′′ − ul′′−1|} ≥ max
l∈[N−2]

uρ(l) − uρ(l+1).

Suppose r ≥ 2. Similarly, the proof for a constant sequence is obvious. Suppose the

sequence is not constant. Let

{l′, r′} = arg max
1≤r′′≤r

max
l∈[N−r′′−1]

uρ(l) − uρ(l+r′′).

If there are several pairs {l′, r′} have the same values, we choose the one that r′ has the

smallest value. If r′ = 1, the proof is similar to the case r = 1. We suppose r′ ≥ 2. Thus

there exist at least r′ elements that are smaller than uρ(l′) and only r′ − 1 elements that are

greater than uρ(l′+r′) and smaller than uρ(l′). Search the sequence {ul}l∈[N ] to find ul′′ that

is smaller than uρ(l′) and its index l′′ is the r′-th closest to ρ(l′). Without loss of generality,

suppose l′′ < ρ(l′).

If ul′′ ≤ uρ(l′+r′), we have

max
1≤r′′≤r′

|ul′′ − ul′′+r′′| ≥ uρ(l′) − uρ(l′+r′)

since there is at least one element in {ul, l′′ + 1 ≤ l ≤ l′′ + r′} that is greater than or equal

to uρ(l′).

If ul′′ > uρ(l′+r′), there exists l′′ ≤ l′′′ ≤ 2ρ(l′)− l′′ such that ul′′′ is smaller than or equal

to uρ(l′+r′) (otherwise, there are r′ elements that are greater than uρ(l′+r′) and smaller than

uρ(l′)). Also near ul′′′ , there must exist at least one element that is not smaller than uρ(l′).
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Then

max
1≤r′′≤r′

max {|ul′′′ − ul′′′+r′′ | , |ul′′′ − ul′′′−r′′ |} ≥ uρ(l′) − uρ(l′+r′).

This completes the proof.

In words, the largest error between the contiguous elements of a sequence is not magnified

when the sequence is rearranged in decreasing (or increasing) order.

The following result establishes that the largest error between two sequences is not mag-

nified when both of the sequences are rearranged in decreasing (or increasing) order.

Lemma D.3. Let u0, . . . , uN−1 ∈ R and v0, . . . , vN−1 ∈ R be two unordered sequences of N

elements. We decreasingly arrange these sequences so that uρ(0) ≥ uρ(1) ≥ · · ·uρ(N−1) and

vρ(0) ≥ vρ(1) ≥ · · · vρ(N−1). Then

max
l∈[N−1]

∣∣uρ(l) − vρ(l)

∣∣ ≤ max
l∈[N−1]

|ul − vl| .

Proof of Lemma D.3. Let

r′ = arg max
r∈[N−1]

∣∣uρ(r) − vρ(r)

∣∣
denote any point at which

∣∣uρ(r) − vρ(r)

∣∣ achieves its maximum and let l′ be the index of

uρ(r′). Without loss of generality, we suppose uρ(r′) ≥ vρ(r′). If vl′ ≤ vρ(r′), we have ul′ − vl′ ≥

uρ(r′) − vρ(r′). Otherwise suppose vl′ > vρ(r′), which implies r′ ≥ 1. Since there are only r′

elements in {ul}l∈[N ] that are greater than uρ(r′) and r′ elements in {vl}l∈[N ] that are greater

than vρ(r′), there must exist l′′ such that ul′′ ≥ uρ(r′) and vl′′ ≤ vρ(r′). Hence

ul′′ − vl′′ ≥ uρ(r′) − vρ(r′).

Lemma D.4. [67, Sturmian separation theorem] Let AN be an N×N Hermitian matrix and

let [AN ]N−1 be the (N − 1)×(N − 1) matrix obtained by deleting the last column and the last
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row of AN . Also let λ0(AN) ≥ · · · ≥ λN−1(AN) and λ0([AN ]N−1) ≥ · · · ≥ λN−2([AN ]N−1)

respectively denote the descending eigenvalues of AN and [AN ]N−1. Then

λl(AN) ≥ λl([AN ]N−1) ≥ λl+1(AN)

for all 0 ≤ l ≤ N − 2.

The above Sturmian separation theorem forms the foundation of the following analysis.

We note that Zizler et.al. [150] utilized the Sturmian separation theorem to prove a refinement

of Szegő’s asymptotic formula in terms of the number of eigenvalues inside a given interval.

Now we are well equipped to prove Theorem 6.3. In what follows, we consider N > 2r.

Note that in this case C̃N is equivalent to ĈN and the eigenvalues of C̃N are the DFT samples

of SN−1(f) = h̃(f) =
∑r

k=−r h[k]ej2πfk. Recall that [HN ]N−r is the (N − r)×(N − r) matrix

obtained by deleting the last r columns and the last r rows of HN . Similar notation holds

for [C̃N ]N−r.

Note that [H ]N−r is exactly the same as [C̃N ]N−r as they have the same elements when

N > 2r. Thus [H ]N−r and [C̃N ]N−r have the same eigenvalues. Let λl([C̃N ]N−r) be permuted

such that

λρ(0)([C̃N ]N−r) ≥ · · · ≥ λρ(N−r−1)([C̃N ]N−r).

We first consider the simple case when r = 1. It follows from the Sturmian separation

theorem that

λl(HN) ≥ λl([HN ]N−1) ≥ λl+1(HN),

λρ(l)(C̃N) ≥ λρ(l)([C̃N ]N−1) ≥ λρ(l+1)(C̃N)

for all 0 ≤ l ≤ N − 2. This implies the following relationship between λl(HN) and λρ(l)(C̃N)

λl(HN) ≤λl−1([HN ]N−1) = λρ(l−1)([C̃N ]N−1) ≤ λρ(l−1)(C̃N), ∀ l = 1, 2, . . . , N − 1,

λl(HN) ≥λl([HN ]N−1) = λρ(l)([C̃N ]N−1) ≥ λρ(l+1)(C̃N), ∀ l = 0, 1, . . . , N − 2
(D.3)
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which give

∣∣∣λl (HN)− λρ(l)

(
C̃N

)∣∣∣ = max
{
λl (HN)− λρ(l)

(
C̃N

)
, λρ(l)

(
C̃N

)
− λl (HN)

}
≤max

{
λρ(l−1)

(
C̃N

)
− λρ(l)

(
C̃N

)
, λρ(l)

(
C̃N

)
− λρ(l+1)

(
C̃N

)}
for all 1 ≤ l ≤ N − 2. Applying Lemma D.2 with r = 1, we obtain

max
1≤l≤N−2

∣∣∣λl (HN)− λρ(l)

(
C̃N

)∣∣∣ ≤ max
0≤l≤N−2

λρ(l)

(
C̃N

)
− λρ(l+1)

(
C̃N

)
≤ max

0≤l≤N−2

∣∣∣λl (C̃N

)
− λl+1

(
C̃N

)∣∣∣ .
Note that h̃(f) is Lipschitz continuous since it is continuously differentiable. There exists a

Lipschitz constant K such that, for all f1 and f2 in [0, 1],

∣∣∣h̃(f1)− h̃(f2)
∣∣∣ ≤ K |f1 − f2| .

From the fact that the eigenvalues of C̃N are the DFT samples of h̃(f), i.e., λl
(
C̃N

)
= h̃( l

N
),

it follows that

max
1≤l≤N−2

∣∣∣λl (HN)− λρ(l)

(
C̃N

)∣∣∣ ≤ max
0≤l≤N−2

∣∣∣λl (C̃N

)
− λl+1

(
C̃N

)∣∣∣
≤ max

0≤l≤N−2

∣∣∣∣h̃(
l

N
)− h̃(

l + 1

N
)

∣∣∣∣ ≤ K
1

N
.

(D.4)

Utilizing the fact that λ0(HN) ≤ maxf∈[0,1] h̃(f) and λN−1(HN) ≥ minf∈[0,1] h̃(f) (see

Lemma D.1) and applying (D.3) with l = 0 which gives

λ0 (HN) ≥ λρ(1)

(
C̃N

)
,

we have

∣∣∣λ0 (HN)− λρ(0)

(
C̃N

)∣∣∣ = max
{
λ0 (HN)− λρ(0)

(
C̃N

)
, λρ(0)

(
C̃N

)
− λ0 (HN)

}
≤max

{
max
f∈[0,1]

h̃(f)− λρ(0)

(
C̃N

)
, λρ(0)

(
C̃N

)
− λρ(1)

(
C̃N

)}
≤K 1

N
,
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where the second inequality follows because λl
(
C̃N

)
are uniform samples of h̃(f) with grid

size 1
N
. Similarly, we have

∣∣∣λN−1 (HN)− λρ(N−1)

(
C̃N

)∣∣∣
= max

{
λρ(N−1)

(
C̃N

)
− λN−1 (HN) , λN−1 (HN)− λρ(N−1)

(
C̃N

)}
≤ max

{
λρ(N−1)

(
C̃N

)
− min

f∈[0,1]
h̃(f), λρ(N−2)

(
C̃N

)
− λρ(N−1)

(
C̃N

)}
≤ K

1

N
.

Along with (D.4), we conclude

max
0≤l≤N−1

∣∣∣λl (HN)− λρ(l)

(
C̃N

)∣∣∣ ≤ K
1

N
.

Now we consider the case r > 1. Repeatedly applying the Sturmian separation theorem

r times yields

λl(HN) ≥ λl([HN ]N−r) ≥ λl+r(HN),

λρ(l)(C̃N) ≥ λρ(l)([C̃N ]N−r) ≥ λρ(l+r)(C̃N)

for all 0 ≤ l ≤ N − r − 1. Noting that [HN ]N−r is the same as [C̃N ]N−r, we have

λl(HN) ≤λl−r([HN ]N−r) = λρ(l−r)([C̃N ]N−r) ≤ λρ(l−r)(C̃N), ∀ l = r, r + 1, . . . , N − 1,

λl(HN) ≥λl([HN ]N−r) = λρ(l)([C̃N ]N−r) ≥ λρ(l+r)(C̃N), ∀ l = 0, 1, . . . , N − r − 1

which give
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max
r≤l≤N−r−1

∣∣∣λl (HN)− λρ(l)

(
C̃N

)∣∣∣
= max

r≤l≤N−r−1
max

{
λl (HN)− λρ(l)

(
C̃N

)
, λρ(l)

(
C̃N

)
− λl (HN)

}
≤ max

r≤l≤N−r−1
max

{
λρ(l−r)

(
C̃N

)
− λρ(l)

(
C̃N

)
, λρ(l)

(
C̃N

)
− λρ(l+r)

(
C̃N

)}
≤ max

0≤l≤N−r−1
λρ(l)

(
C̃N

)
− λρ(l+r)

(
C̃N

)
≤ max

1≤r′≤r
max

0≤l≤N−r′−1

∣∣∣λl (C̃N

)
− λl+r′

(
C̃N

)∣∣∣
≤ K

r

N
,

where the third inequality follows from Lemma D.2. Since

λr−1(HN) ≤ · · · ≤ λ0(HN) ≤ max
f∈[0,1]

h̃(f),

we bound
∣∣∣λr′ (HN)− λρ(r′)

(
C̃N

)∣∣∣ , r′ ≤ r − 1 by considering the following two cases: if

λρ(r′)

(
C̃N

)
≤ λr′ (HN), we have

λr′ (HN)− λρ(r′)

(
C̃N

)
≤ max

f∈[0,1]
h̃(f)− λρ(r−1)

(
C̃N

)
≤ K

r

N
;

if λρ(r′)

(
C̃N

)
> λr′ (HN), we have

λρ(r′)

(
C̃N

)
− λr′ (HN) ≤λρ(r′)

(
C̃N

)
− λρ(r′+r)

(
C̃N

)
≤ max

1≤r′′≤r
max

0≤l≤N−r′′−1

∣∣∣λl (C̃N

)
− λl+r′′

(
C̃N

)∣∣∣
≤K r

N

where the second line follows because λr′ (HN) ≥ λρ(r′+r)

(
C̃N

)
and the third line follows

from Lemma D.2. Thus we have

∣∣∣λr′ (HN)− λρ(r′)

(
C̃N

)∣∣∣ ≤ K
r

N

for all 0 ≤ r′ ≤ r − 1. Similarly,
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∣∣∣λN−r′ (HN)− λρ(N−r′)

(
C̃N

)∣∣∣
≤ max

{
λρ(N−r′)

(
C̃N

)
− min

f∈[0,1]
h̃(f), λρ(N−r′−r)

(
C̃N

)
− λρ(N−r′)

(
C̃N

)}
≤ max

{
K
r

N
,K

r

N

}
= K

r

N
,

for all 1 ≤ r′ ≤ r. Therefore,

max
0≤l≤N−1

∣∣∣λl (HN)− λρ(l)

(
C̃N

)∣∣∣ ≤ Kr
1

N
.

for all N > 2r.

Note that Sr+1(f) = Sr+2(f) = · · · = SN−1(f) which gives

σN(f) =

∑N−1
n=0 Sn(f)

N
=

∑r
n=0 Sn(f)

N
+
N − r − 1

N
Sr+1(f).

Thus

|σN(f)− SN−1(f)| =
∣∣∣∣∑r

n=0 Sn(f)

N
− r + 1

N
Sr+1(f)

∣∣∣∣
=

∣∣∣∣∣
r∑

n=0

Sn(f)− (r + 1)Sr+1(f)

∣∣∣∣∣ 1

N

=O(
1

N
)

uniformly on [0, 1] as N →∞. Therefore,

max
0≤l≤N−1

∣∣∣λl(CN)− λl(C̃N)
∣∣∣ = max

0≤l≤N−1

∣∣∣∣σN(
l

N
)− SN−1(

l

N
)

∣∣∣∣ = O(
1

N
)

as N →∞. Finally,
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max
0≤l≤N−1

∣∣λρ(l)(CN)− λl(HN)
∣∣

= max
0≤l≤N−1

∣∣∣λρ(l)(CN)− λρ(l)(C̃N) + λρ(l)(C̃N)− λl(HN)
∣∣∣

≤ max
0≤l≤N−1

∣∣∣λρ(l)(CN)− λρ(l)(C̃N)
∣∣∣+ max

0≤l≤N−1

∣∣∣λρ(l)(C̃N)− λl(HN)
∣∣∣

≤ max
0≤l≤N−1

∣∣∣λl(CN)− λl(C̃N)
∣∣∣+ max

0≤l≤N−1

∣∣∣λρ(l)(C̃N)− λl(HN)
∣∣∣

= O(
1

N
)

as N →∞, where the second inequality follows from Lemma D.3.

D.3 Proof of Theorem 6.4

We first provide another condition (which, informally speaking, is weaker than that in

Theorem D.1) under which the equal distribution of two sequences implies individual asymp-

totic equivalence. Its proof is deferred to Appendix D.7.

Theorem D.2. Assume that b ≥ uN,0 ≥ uN,1 ≥ · · · ≥ uN,N−1 ≥ a and b ≥ vN,0 ≥

vN,1 ≥ · · · ≥ vN,N−1 ≥ a. Furthermore, suppose there is a Riemann integrable function

g(x) : [c, d]→ [a, b] such that

uN,l, vN,l ∈ int (essR(g)) , ∀ l ∈ [N ], N ∈ N,

and

lim
N→∞

1

N

N−1∑
l=0

ϑ(uN,l) =
1

d− c

∫ d

c

ϑ(g(x))dx <∞

for all ϑ that are continuous on [a, b]. Then the following are equivalent:

lim
N→∞

1

N

N−1∑
l=0

(ϑ(uN,l)− ϑ(vN,l)) = 0; (D.5)
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lim
N→∞

max
l
|uN,l − vN,l| = 0. (D.6)

If h̃(f) ≡ C is a constant function, then λl (HN) = λl
(
CN

)
= C for all l ∈ [N ]. Thus

Theorem 6.4 holds trivially. On the other hand, suppose that h̃ ∈ L∞([0, 1]) is not a constant

function and the essential range of h̃ is
[
ess inf h̃, ess sup h̃

]
. It follows from Lemma D.1 that

λl (HN) , λl
(
CN

)
∈ int

(
R
(
h̃
))

for all l ∈ [N ] and N ∈ N. Using Lemma 6.1 and Szegő’s

theorem (see (2.23)), the fact that h[k] is square summable together with the fact that

HN ,CN are absolutely bounded imply

lim
N→∞

1

N

N−1∑
l=0

ϑ(λl(HN)) =

∫ 1

0

ϑ(h̃(f))df,

and

lim
N→∞

1

N

N−1∑
l=0

(
ϑ(λl(HN))− ϑ(λl(CN))

)
= 0

for all ϑ that are continuous on
[
ess inf h̃, ess sup h̃

]
. Finally, (6.3) follows from Theorem D.2

with g = h̃, uN,l = λl(HN) and vN,l = λρ(l)(CN). This completes the proof of Theorem 6.4.

Remark D.1. Theorem D.1 requires that g is continuous and that the extreme values of the

sequences asymptotically converge to the extreme values of g (but meanwhile the extreme

values of the sequences can be outside of the range of g). Theorem D.2 requires the sequences

to be strictly inside the range of g.

D.4 Proof of Theorem 6.5

Lemma D.5. Let DN(f) := sin(πNf)
sin(πf)

denote the Dirichlet kernel. Fix 0 < W < 1
2
. We have

∫ 1

0

|DN(f)|2 df = N, ∀ N ∈ N,∫ 1−W

W

|DN(f)|2 df = O(1), when N →∞.
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Proof of Lemma D.5. Noting that DN(f) = sin(πNf)
sin(πf)

= ej2πfN

ejπf

∑N−1
n=0 e

j2πfn, we have

|DN(f)|2 =

∣∣∣∣∣
N−1∑
n=0

ej2πfn

∣∣∣∣∣
2

=

(
N−1∑
n=0

ej2πfn

)(
N−1∑
m=0

e−j2πfm

)
=

N−1∑
n=0

N−1∑
m=0

ej2πf(n−m).

It follows that

∫ 1

0

|DN(f)|2 df =

∫ 1

0

N−1∑
n=0

N−1∑
m=0

ej2πf(n−m)df =
N−1∑
n=0

N−1∑
m=0

∫ 1

0

ej2πf(n−m)df = N.

Fix 0 < W < 1
2
. For any f ∈ [W, 1−W ], |DN(f)| is bounded above by 1

sin(πW )
. Therefore,

∫ 1−W

W

|DN(f)|2 df ≤
∫ 1−W

W

1

sin2 (πW )
df ≤ 1

sin2 (πW )
.

Since h̃ is bounded and Riemann integrable over [0, 1], it follows from the Riemann-

Lebesgue theorem that h̃ is continuous almost everywhere in [0, 1]. Thus we can select

f0 ∈ [0, 1] and a positive number W such that

∣∣∣h̃(f)− ess sup h̃
∣∣∣ ≤ ε

4

holds almost everywhere for |f − f0| ≤ W . For any v ∈ CN , we have

〈HNv,v〉 =

∫ 1

0

|ṽ(f)|2 h̃(f)df

=

∫ f0+W

f0−W
|ṽ(f)|2 h̃(f)df +

∫
f∈[0,1]

f /∈[f0−W,f0+W ]

|ṽ(f)|2 h̃(f)df

≥
(

ess sup h̃− ε

4

)∫ f0+W

f0−W
|ṽ(f)|2 d̃f

−max
(∣∣∣ess inf h̃

∣∣∣ , ∣∣∣ess sup h̃
∣∣∣) · ∫

f∈[0,1]
f /∈[f0−W,f0+W ]

|ṽ(f)|2 d̃f.

(D.7)
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The DTFT of el/N is

ẽl/N(f) =
e
−jπN

(
f− l√

N

)
e−jπ(f−

l
N )

DN(f − l

N
).

Fix h̃, ε and W . If N ≥ 1
W
, there always exists l′ such that

∣∣ l′
N
− f0

∣∣ ≤ W
2
. It follows from

Lemma D.5 that

∫ l′
N

+W
2

l′
N
−W

2

∣∣∣∣ 1√
N
ẽl′/N(f)

∣∣∣∣2 df = 1− 1

N

∫ 1−W
2

W
2

|DN(f)|2 df = 1− o(1)

as N →∞. Note that [ l
′

N
− W

2
, l
′

N
+ W

2
] ⊂ [f0 −W, f0 +W ]. Thus there exists N1 ∈ N such

that for all N ≥ max
{
N1,

1
W

}
∫ f0+W

f0−W

∣∣∣∣ 1√
N
ẽl′/N(f)

∣∣∣∣2 d̃f ≥ 1− ε

4
∣∣∣ess sup h̃

∣∣∣ ,∫
f∈[0,1]

f /∈[f0−W,f0+W ]

∣∣∣∣ 1√
N
ẽl′/N(f)

∣∣∣∣2 d̃f ≤ ε

2 ·max
(∣∣∣ess inf h̃

∣∣∣ , ∣∣∣ess sup h̃
∣∣∣) .

(D.8)

Combining (D.7) and (D.8) yields

λl′
(
CN

)
=〈HN

1√
N
el′/N ,

1√
N
el′/N〉

≥
(

ess sup h̃− ε

4

)1− ε

4
∣∣∣ess sup h̃

∣∣∣
− ε

2

≥ ess sup h̃− ε

4
− ε

4
+

ε2

16
∣∣∣ess sup h̃

∣∣∣ − ε

2

≥ ess sup h̃− ε

for all N ≥ max
{
N1,

1
W

}
. Noting that λl′

(
CN

)
≤ λρ(0)

(
CN

)
≤ ess sup h̃, we have

∣∣∣λρ(0) (CN)− ess sup h̃
∣∣∣ ≤ ε
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for all N ≥ N0. Since ε is arbitrary, we conclude

lim
N→∞

λρ(0)

(
CN

)
= ess sup h̃.

With a similar argument, we have

lim
N→∞

λρ(N−1)

(
CN

)
= ess inf h̃.

Noting that λρ(0)

(
CN

)
≤ λ0 (HN) ≤ ess sup h̃ and ess inf h̃ ≤ λN−1(HN) < λρ(N−1)(CN)

(see Lemma D.1), we complete the proof by noting that

lim
N→∞

λρ(0)

(
CN

)
= lim

N→∞
λ0 (HN) = ess sup h̃

lim
N→∞

λρ(N−1)

(
CN

)
= lim

N→∞
λN−1 (HN) = ess inf h̃.

Remark D.2. Theorem 6.5 works only for the circulant matrix CN and not C̃N or ĈN . This

is closely related to the fact that the partial Cesàro sum has better convergence than the

partial Fourier sum [77].

Remark D.3. Theorem 6.5 only requires h̃ to be bounded and Riemann integrable, while

Theorem 6.4 requires the range of h̃ to be connected.

D.5 Proof of Lemma 6.1

It follows from the definition of ĈN that
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∥∥∥HN − ĈN

∥∥∥2

F

=

bN−1
2 c∑

k=1

k
(
|h[k]− h[−N + k]|2 + |h[−k]− h[N − k]|2

)
+

bN/2c∑
k=bN−1

2 c+1

k
(
|h[k]|2 + |h[−k]|2

)

≤
bN/2c∑
k=1

2k
(
|h[k]|2 + |h[−k]|2 + |h[N − k]|2 + |h[k −N ]|2

)
≤

N−1∑
k=1

2k
(
|h[k]|2 + |h[−k]|2

)
.

Fix ε > 0. By assumption that the sequence h[k] is square summable, there exists N0 such

that

∞∑
k=N0

|h[k]|2 + |h[−k]|2 ≤ ε.

Thus we have

1

N

∥∥∥HN − ĈN

∥∥∥2

F
≤ 1

N

N0−1∑
k=1

2k
(
|h[k]|2 + |h[−k]|2

)
+

1

N

N∑
k=N0

2k
(
|h[k]|2 + |h[−k]|2

)
≤ 1

N

N0−1∑
k=1

2k
(
|h[k]|2 + |h[−k]|2

)
+ 2

N∑
k=N0

(
|h[k]|2 + |h[−k]|2

)
≤ ε+ 2ε = 3ε

when N ≥ max {N0, N1} with N1 ≥
∑N0−1

k=1 2k
(
|h[k]|2 + |h[−k]|2

)
/ε. Since ε is arbitrary, we

obtain

lim
N→∞

1

N

∥∥∥HN − ĈN

∥∥∥2

F
= 0.

Noting that HN and ĈN are absolutely bounded by assumption, we conclude HN ∼ ĈN .

The proofs of HN ∼ C̃N and HN ∼ CN follow from the same approach.

D.6 Proof of Theorem D.1

Set
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Fg(α) :=
1

d− c
µ {x ∈ [c, d] : g(x) ≤ α} , (D.9)

FuN (α) :=
1

N
# {l ∈ [N ], uN,l ≤ α} ,

FvN (α) :=
1

N
# {l ∈ [N ], vN,l ≤ α} .

Here, µ(E) is the Lebsegue measure of a subset E ∈ R.

Definition 6.1 states that the sequences {{uN,l}l∈[N ]}∞N=1 and {{vN,l}l∈[N ]}∞N=1 are asymp-

totically equally distributed if

lim
N→∞

1

N

N−1∑
l=0

(ϑ (uN,l)− ϑ (vN,l)) = 0

for all ϑ that are continuous on [a, b]. Here [a, b] is the smallest interval that covers the

sequences {{uN,l}l∈[N ]}∞N=1 and {{vN,l}l∈[N ]}∞N=1.

Trench [126] strengthens this definition by showing the following result.

Lemma D.6. [126, Asymptotcially (absolutely) equal distribution] Assume that b ≥ uN,0 ≥

uN,1 ≥ · · · ≥ uN,N−1 ≥ a and b ≥ vN,0 ≥ vN,1 ≥ · · · ≥ vN,N−1 ≥ a. The following are

equivalent:

1. limN→∞
1
N

∑N−1
l=0 (ϑ (uN,l)− ϑ (vN,l)) = 0 for all ϑ that are continuous on [a, b];

2. limN→∞
1
N

∑N−1
l=0 |ϑ (uN,l)− ϑ (vN,l)| = 0 for all ϑ that are continuous on [a, b].

Here the sequences {{uN,l}l∈[N ]}∞N=1 and {{vN,l}l∈[N ]}∞N=1 are said to be absolutely asymptot-

ically equally distributed [126] if

lim
N→∞

1

N

N−1∑
l=0

|ϑ (uN,l)− ϑ (vN,l)| = 0

for all ϑ that are continuous on [a, b].

Viewing g : [c, d] → R as a random variable, in probabilistic language, Fg is the cumu-

lative distribution function (CDF) associated to g. Also FuN and FvN can be viewed as the

220



CDF of the discrete random variables uN : {0, 1, . . . , N − 1} → R defined by uN(l) = uN,l

and vN : {0, 1, . . . , N − 1} → R defined by vN(l) = vN,l, respectively. It is well known that

the CDF of a random variable is right continuous and non-decreasing. The following result,

known as the Portmanteau Lemma, gives a number of equal descriptions of weak convergence

in terms of the CDF and the means of the random variables.

Lemma D.7. [131, Portmanteau Lemma] The following are equivalent:

1. limN→∞
1
N

∑N−1
l=0 ϑ(uN,l) = 1

d−c

∫ d
c
ϑ(g(x))dx, for all bounded, continuous functions ϑ;

2. limN→∞ FuN (α) = Fg(α) for every point α at which Fg is continuous.

Despite the fact that Fg(α) is right continuous and non-decreasing everywhere, some

stronger results about Fg(α) can be obtained by utilizing the fact that g is continuous on

[c, d].

Lemma D.8. Let Fg(α) be defined as in (D.9). Then Fg(α) is strictly increasing on R(g),

i.e., for every α ∈ int (R(g)), there exists ε > 0 such that, for each pair (α1, α2) satisfying

min
x∈[c,d]

g(x) ≤ α− ε < α1 < α < α2 < α + ε ≤ max
x∈[c,d]

g(x),

we have

Fg(α1) < Fg(α) < Fg(α2).

Proof of Lemma D.8. Since g(x) : [c, d]→ R is continuous, there exists ε such that (α− ε, α + ε) ⊂

R(g) for α ∈ int (R(g)). Let α1 be an arbitrary value such that α − ε < α1 < α and let

α′1 = α+α1

2
∈ R(g). Noting that g is continuous, we have

µ

{
x ∈ [c, d] : |g(x)− α′1| <

α− α1

2

}
> 0.
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Thus, we obtain

Fg(α)− Fg(α1) =
1

d− c
µ {x ∈ [c, d] : α1 < g(x) ≤ α}

≥ 1

d− c
µ {x ∈ [c, d] : α1 < g(x) < α} > 0.

Similarly, we have Fg(α) < Fg(α2) for α < α2 < α + ε.

We are now ready to prove the main part. First we show that (D.2) implies (D.1). Fix ϑ

being some continuous function on [a, b] and ε > 0. The Weierstrass approximation theorem

states that there exists a polynomial p on [a, b] such that

|ϑ(t)− p(t)| ≤ ε

3

for all t ∈ [a, b]. Since p is a polynomial, there exists a constant C such that

|p(t2)− p(t1)| ≤ C |t2 − t1|

for any a ≤ t1 ≤ t2 ≤ b. Also (D.2) implies that there exists an N0 ∈ N such that

|uN,l − vN,l| ≤
ε

3C
, ∀ l ∈ [N ]

for all N ≥ N0. Therefore, we have

|ϑ(uN,l)− ϑ(vN,l)|
≤ |ϑ(uN,l)− p(uN,l)|+ |p(uN,l)− p(vN,l)|+ |ϑ(vN,l)− p(vN,l)|

≤ ε

3
+ C

ε

3C
+
ε

3
= ε

for all l ∈ [N ] and N ≥ N0. Thus

∣∣∣∣∣ 1

N

N−1∑
l=0

(ϑ (uN,l)− ϑ (vN,l))

∣∣∣∣∣ ≤ 1

N

N−1∑
l=0

|ϑ(uN,l)− ϑ(vN,l)| ≤ ε
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for all N ≥ N0. Since ε is arbitrary, this implies (D.1).

Now let us show that (D.1) implies (D.2). We prove the statement (D.1) ⇒ (D.2) by

contradiction. Suppose (D.2) is not true, i.e., there exists an increasing sequence {Mk}∞k=1

and ε1 > 0 such that

max
l∈[Mk]

|uMk,l − vMk,l| ≥ 2ε1

for all k ≥ 1. Let lk = arg maxl∈[Mk] |uMk,l − vMk,l| denote any point at which |uMk,l − vMk,l|

achieves its maximum, which implies |uMk,lk − vMk,lk | ≥ 2ε1. Without loss of generality, we

suppose uMk,lk ≤ vMk,lk , i.e., uMk,lk ≤ vMk,lk − 2ε1.

1. Suppose uMk,lk ≥ maxx∈[c,d] g(x), which indicates vMk,lk ≥ 2ε1 + maxx∈[c,d] g(x). This

contradicts the assumption that limN→∞ vN,0 = maxx∈[c,d] g(x).

2. Suppose uMk,lk < maxx∈[c,d] g(x). By assumption that

lim
N→∞

uN,N−1 = lim
N→∞

vN,N−1 = min
x∈[c,d]

g(x),

there exist k0 ∈ N and αk ∈ int (R(g)) such that

0 ≤ αk − uMk,lk <
ε1
2

and Fg is continuous at αk for all k ≥ k0. Noting that Fg is right continuous everywhere

and strictly increasing at αk (which is shown in Lemma D.8), there exist ε2, ε3 > 0 such

that ε2 ≤ ε1
2
, Fg is continuous at αk + ε2, and

Fg(αk + ε2) = Fg(αk) + 3ε3. (D.10)

Lemma D.7 indicates that

lim
Mk→∞

FuMk (α) = Fg(α)

for every point α at which Fg is continuous. Thus there exist k1 ∈ N, k1 ≥ k0 such that
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∣∣∣FuMk (αk)− Fg (αk)
∣∣∣ < ε3,∣∣∣FuMk (αk + ε2)− Fg (αk + ε2)
∣∣∣ < ε3

(D.11)

for all k ≥ k1. Thus, we have

FuMk (αk + ε2)− FuMk (αk)

= FuMk (αk + ε2)− Fg(αk + ε2) + Fg(αk + ε2)− Fg(αk) + Fg(αk)− FuMk (αk)

≥ Fg(αk + ε2)− Fg(αk)−
∣∣∣Fg(αk)− FuMk (αk)

∣∣∣− ∣∣∣FuMk (αk + ε2)− Fg(αk + ε2)
∣∣∣

≥ 3ε3 − ε3 − ε3 = ε3

for all k ≥ k1, where the last line follows from (D.10) and (D.11). Noting that the

above equation is equivalent to

1

Mk

# {l ∈ [Mk], αk < uMk,l ≤ αk + ε2} ≥ ε3,

we have

1

Mk

# {l ∈ [Mk], uMk,lk < uMk,l ≤ αk + ε2}

≥ 1

Mk

# {l ∈ [Mk], αk < uMk,l ≤ αk + ε2} ≥ ε3.

Thus, we obtain

0 ≤ uMk,lk−dε3Mke − uMk,lk ≤ αk + ε2 − uMk,lk ≤ ε1,

which implies

vMk,lk − uMk,lk−dε3Mke ≥ vMk,lk − uMk,lk + uMk,lk − uMk,lk−dε3Mke ≥ 2ε1 − ε1 ≥ ε1.

Now taking ϑ(t) = t, we obtain
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1

Mk

Mk−1∑
l=0

|ϑ(uMk,l)− ϑ(vMk,l)| ≥
1

Mk

lk∑
l=lk−dε3Mke

|ϑ(uMk,l)− ϑ(vMk,l)|

≥ 1

Mk

lk∑
l=lk−dε3Mke

|ϑ(uMk,l)− ϑ(vMk,lk)| ≥ ε3ε1 > 0

for all k ≥ k1. This contradicts Lemma D.6.

D.7 Proof of Theorem D.2

Theorem D.3. (Riemann-Lebesgue theorem [5, Theorem 7.48]) The function g(x) ∈ L∞ ([a, b])

is Riemann integrable over [a, b] if and only if it is continuous almost everywhere in [a, b].

Despite the fact that Fg(α) is right continuous and non-decreasing everywhere, some

stronger results about Fg(α) can be obtained at some point α since g(x) is Riemann inte-

grable.

Lemma D.9. Suppose g(x) : [c, d]→ [a, b] is Riemann integrable and let Fg(α) be defined as

in (D.9). Then Fg(α) is strictly increasing at α if α ∈ int (essR(g)), i.e., there exists ε > 0

such that, for every pair (α1, α2) such that α− ε < α1 < α < α2 < α+ ε, Fg(α1) < Fg(α) <

Fg(α2).

Proof of Lemma D.9. Since g(x) : [c, d]→ [a, b] is Riemann integrable and α ∈ int (essR(g)),

there exists ε such that (α− ε, α + ε) ⊂ essR(g). Let α1 be an arbitrary value such that

α − ε < α1 < α and let α′1 = α+α1

2
∈ essR(g). It follows from the definition of essential

range that

µ

{
x ∈ [c, d] : |g(x)− α′1| <

α− α1

2

}
> 0.

Thus, we obtain

Fg(α)− Fg(α1) =
1

d− c
µ {x ∈ [c, d] : α1 < g(x) ≤ α}

≥ 1

d− c
µ {x ∈ [c, d] : α1 < g(x) < α} > 0.
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Similarly, we have Fg(α) < Fg(α2) for α < α2 < α + ε.

We are now ready to prove the main part using the same approach that was used to

prove Theorem D.1.

i. First, we show that (D.6) implies (D.5). This part is the same as those in Appendix D.6.

ii. Now let us show that (D.5) implies (D.6). We prove the statement (D.5) ⇒ (D.6) by

contradiction. Suppose (D.6) is not true, i.e., there exists an increasing sequence {Mk}∞k=1

and ε1 > 0 such that

max
l∈[Mk]

|uMk,l − vMk,l| ≥ 2ε1, ∀ k ≥ 1.

Let lk = arg maxl∈[Mk] |uMk,l − vMk,l| denote any point at which |uMk,l − vMk,l| achieves its

maximum. This implies |uMk,lk − vMk,lk | ≥ 2ε1. Without loss of generality, we suppose Fg

is continuous at uMk,lk and uMk,lk ≤ vMk,lk , i.e., uMk,lk ≤ vMk,lk − 2ε1. Otherwise, one can

always pick a ûMk,lk that is close enough to uMk,lk and such that Fg is continuous at ûMk,lk

since Fg is continuous almost everywhere.

By assumption, uMk,lk ∈ int (essR(g)). Noting that Fg is right continuous everywhere

and strictly increasing at uMk,lk (which is shown in Lemma D.9), there exist ε2 > 0 and

ε3 > 0 such that ε2 < ε1, Fg is continuous at uMk,lk + ε2, and

Fg(uMk,lk + ε2) = Fg(uMk,lk) + 3ε3. (D.12)

Lemma D.7 indicates that

lim
Mk→∞

FuMk (α) = Fg(α)

for every point α at which Fg is continuous. Thus there exists k0 ∈ N such that

∣∣∣FuMk (uMk,lk)− Fg (uMk,lk)
∣∣∣ ≤ε3,∣∣∣FuMk (uMk,lk + ε2)− Fg (uMk,lk + ε2)
∣∣∣ ≤ε3 (D.13)

for all k ≥ k0. Thus, we have
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FuMk (uMk,lk + ε2)− FuMk (uMk,lk)

=
(
FuMk (uMk,lk + ε2)− Fg(uMk,lk + ε2)

)
+ (Fg(uMk,lk + ε2)− Fg(uMk,lk))

+
(
Fg(uMk,lk)− FuMk (uMk,lk)

)
≥ Fg(uMk,lk + ε2)− Fg(uMk,lk)−

∣∣∣FuMk (uMk,lk + ε2)− Fg(uMk,lk + ε2)
∣∣∣

−
∣∣∣Fg(uMk,lk)− FuMk (uMk,lk)

∣∣∣
≥ 3ε3 − ε3 − ε3 = ε3

for all k ≥ k0, where the last line follows from (D.12) and (D.13). Note that the above

equation is equivalent to

1

Mk

# {l ∈ [Mk], uMk,lk < uMk,l ≤ uMk,lk + ε2} ≥ ε3.

Then

0 ≤ uMk,lk−dε3Mke − uMk,lk ≤ uMk,lk + ε2 − uMk,lk = ε2,

which implies

vMk,lk − uMk,lk−dε3Mke ≥ vMk,lk − uMk,lk + uMk,lk − uMk,lk−dε3Mke

≥ 2ε1 − ε2 ≥ 2ε1 − ε1 ≥ ε1.

Now taking ϑ(t) = t, we obtain

1

Mk

Mk−1∑
l=0

|ϑ(uMk,l)− ϑ(vMk,l)| ≥
1

Mk

lk∑
l=lk−dε3Mke

|ϑ(uMk,l)− ϑ(vMk,l)|

≥ 1

Mk

lk∑
l=lk−dε3Mke

|ϑ(uMk,l)− ϑ(vMk,lk)| ≥ ε3ε1 > 0

for all k ≥ k1. This contradicts Lemma D.6.
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D.8 Proof of Lemma 6.4

The following result indicates that the main lobe of the Dirichlet kernel contains most of

its energy.

Lemma D.10. Let DN(f) = sin(πNf)
sin(πf)

be the Dirichlet kernel. Then

∫ 1
N

0

|DN(f)|2 df ≥ 0.45N.

Proof of Lemma D.10. Noting that |DN(f)| = |sin(πNf)|
|sin(πf)| ≥

|sin(πNf)|
|πf | , we have

∫ 1
N

0

|DN(f)|2 df ≥
∫ 1

N

0

∣∣∣∣sin(πNf)

πf

∣∣∣∣2 df =
N

π

∫ π

0

∣∣∣∣sin(f)

f

∣∣∣∣2 df =
N

π

∫ π

0

1−cos(2f)
2

f 2
df

=
N

2π

∫ π

0

∞∑
k=1

(−1)k+1(2f)2k

(2k)!f 2
df =

N

π

∞∑
k=1

(−1)k+1(2π)2k−1

(2k)!(2k − 1)

≥ N

π

8∑
k=1

(−1)(k+1)(2π)2k−1

(2k)! (2k − 1)
≥ 0.45N,

where the third line follows from the common Taylor series cos(2f) =
∑∞

k=0(−1)k (2f)2k

(2k)!
.

Suppose N is a multiple of 4. Note that

λl(CN) =

∫ 1

0

∣∣∣∣ 1√
N
ẽl/N

∣∣∣∣2 h̃(f)df =

∫ 1
4

0

∣∣∣∣ 1√
N
ẽl/N(f)

∣∣∣∣2 df +

∫ 1

3
4

∣∣∣∣ 1√
N
ẽl/N(f)

∣∣∣∣2 df.
If l = N/4,

∣∣∣ 1√
N
ẽl/N(f)

∣∣∣ = 1√
N

∣∣DN(f − 1
4
)
∣∣. Thus

λN/4(CN) =
1

N

∫ 1
4

0

∣∣∣∣DN(f − 1

4
)

∣∣∣∣2 df +
1

N

∫ 1

3
4

∣∣∣∣DN(f − 1

4
)

∣∣∣∣2 df
=

1

N

∫ 1/2

0

|DN(f)|2 df =
1

N

1

2

∫ 1

0

|DN(f)|2 df =
1

2
.

Similarly, we have λ3N/4(CN) = 1
2
.
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Now for any l ∈ [N ], l
N
∈ [0, 1

4
)∪ (3

4
, 1], the main lobe of DN(f − l

N
) is inside the interval

[0, 1
4
] ∪ [3

4
, 1]. Thus

λl(CN) =
1

N

∫ 1
4

0

∣∣∣∣DN(f − l

N
)

∣∣∣∣2 df +
1

N

∫ 1

3
4

∣∣∣∣DN(f − l

N
)

∣∣∣∣2 df
≥ 2

N

∫ 1
N

0

|DN(f)|2 df ≥ 0.9.

Similarly, for any l ∈ [N ], l
N
∈ (1

4
, 3

4
), we have

λl(CN) =
1

N

∫ 1
4

0

∣∣∣∣DN(f − l

N
)

∣∣∣∣2 df +
1

N

∫ 1

3
4

∣∣∣∣DN(f − l

N
)

∣∣∣∣2 df
≤1− 2

N

∫ 1
N

0

|DN(f)|2 df ≤ 0.1.

The proof is completed by noting that 0 ≤ λl(CN) ≤ 1 for all l ∈ [N ].
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APPENDIX E

PROOFS FOR CHAPTER 7

This appendix contains the proofs for Chapter 7.

E.1 Proof of Proposition 7.1

Note that

dn(W(A, φ̂(ξ))) = inf
Mn

sup
x∈W(A,φ̂(ξ))

inf
y∈Mn

‖x− y‖L2(A)

= inf
Mn

sup
‖α‖≤1

‖Aα− PMn‖

= inf
Mn

sup
z⊥Mn

sup
‖α‖≤1

|〈Aα, z〉|
‖z‖

= inf
Mn

sup
z⊥Mn

sup
‖α‖≤1

|〈α,A∗z〉|
‖z‖

= inf
Mn

sup
z⊥Mn

‖A∗z‖
‖z‖

= inf
Mn

sup
z⊥Mn

√
〈AA∗z, z〉
‖z‖

=
√
λn

where the last line follows from the the Weyl-Courant minimax theorem.

E.2 Proof of Theorem 7.1

We first note that χξ(0) = 1 for all ξ ∈ Ĝ. Thus, we have

∑
`

λ`(OAτ ,B) =

∫
A
KB(0) dh = |A|

∫
B
χξ(0) d ξ = |Aτ ||B|. (E.1)

We write the operator (TABBTA)2 as
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(TABBTABBTAx)(g) =

∫
A
KB(h̃−1 ◦ g)

(∫
A
KB(h−1 ◦ h̃)x(h) dh

)
d h̃

=

∫
A

(∫
A
KB(h̃−1 ◦ g)KB(h−1 ◦ h̃) d h̃

)
x(h) dh.

Thus,

∑
`

λ2
`(OAτ ,B) =

∫
A

∫
A
KB(h̃−1 ◦ h)KB(h−1 ◦ h̃) d h̃ dh

=

∫
A

∫
A

∣∣∣KB(h−1 ◦ h̃)
∣∣∣2 d h̃ dh

where we use the fact that KB(h−1 ◦ g) =
∫
B χξ(h

−1 ◦ g) d ξ = (
∫
B χξ(g

−1 ◦ h) d ξ)∗ since

χξ(−g) = χ∗ξ(g). Applying the change of variable h̃ = h ◦ h, we obtain

∑
`

λ2
`(OAτ ,B) =

∫
A

∫
A−h

∣∣KB(h)
∣∣2 dh dh =

∫
A
κAτ ,B(h) dh, (E.2)

where κAτ ,B(h) =
∫
A−h

∣∣KB(h)
∣∣2 dh ≥ 0. The function κAτ ,B(h) is dominated as

κAτ ,B(h) ≤
∫
G

∣∣KB(h)
∣∣2 dh =

∫
G

∣∣∣∣∫
B
χξ(h) d ξ

∣∣∣∣2 dh =

∫
B
|χξ(h)|2 d ξ = |B|

where we use Parseval’s theorem. On the other hand, we have

lim
τ→∞

κAτ ,B(h) =

∫
G

∣∣∣∣∫
B
χξ(h) d ξ

∣∣∣∣2 dh = |B|

for all h ∈ G. Then we have

lim
τ→∞

∑
`

λ2
`(OAτ ,B) =

∫
A
|B| dh = |Aτ ||B|.

Thus, we have

∑
`

λ2
`(OAτ ,B) = |Aτ ||B| − o(|Aτ ||B|). (E.3)

Subtracting (E.3) from (E.1) gives
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∑
`

λ`(OAτ ,B) (1− λ`(OAτ ,B)) = o(|Aτ ||B|). (E.4)

Utilizing the fact that 0 ≤ λ`(OAτ ,B) ≤ 1, we have

1

ε(1− ε)
N (OAτ ,B; (ε, 1− ε)) ≤

∑
`

λ`(OAτ ,B) (1− λ`(OAτ ,B)) = o(|Aτ ||B|).

On the other hand, (E.4) also implies that

∑
`:λ`(OAτ ,B)<1−ε

ελ`(OAτ ,B) <
∑
`

λ`(OAτ ,B) (1− λ`(OAτ ,B)) = o(|Aτ ||B|). (E.5)

Plugging this term into (E.1) gives

|Aτ ||B| =
∑
`

λ`(OAτ ,B) =
∑

`:λ`(OAτ ,B)≥1−ε

λ`(OAτ ,B) +
∑

`:λ`(OAτ ,B)1−ε

λ`(OAτ ,B)

=
∑

`:λ`(OAτ ,B)≥1−ε

λ`(OAτ ,B) + o(|Aτ ||B|).

Similarly, plugging (E.5) into (E.3) gives

|Aτ ||B| =
∑

`:λ`(OAτ ,B)≥1−ε

λ2
`(OAτ ,B) + o(|Aτ ||B|).

Combining the above two equations and the fact that λ`(OAτ ,B) ≤ 1, we have

∑
`:λ`(OAτ ,B)≥1−ε

λ`(OAτ ,B)− λ2
`(OAτ ,B) = o(|Aτ ||B|). (E.6)

On one hand, combining (E.6) with∑
`:λ`(OAτ ,B)≥1−ε

λ`(OAτ ,B)− λ2
`(OAτ ,B) ≤

∑
`:λ`(OAτ ,B)≥1−ε

1− λ`(OAτ ,B)

gives

N (OAτ ,B; [1− ε, 1])−
∑

`:λ`(OAτ ,B)≥1−ε

λ`(OAτ ,B) =
∑

`:λ`(OAτ ,B)≥1−ε

1− λ`(OAτ ,B) ≥ o(|Aτ ||B|),

which further implies
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N (OAτ ,B; [1− ε, 1]) ≥ |Aτ ||B| − o(|Aτ ||B|).

On the other hand, using (E.6) and∑
`:λ`(OAτ ,B)≥1−ε

λ`(OAτ ,B)− λ2
`(OAτ ,B) ≥ (1− ε)

∑
`:λ`(OAτ ,B)≤1−ε

1− λ`(OAτ ,B),

we also have

N (OAτ ,B; [1− ε, 1])−
∑

`:λ`(OAτ ,B)≥1−ε

λ`(OAτ ,B) =
∑

`:λ`(OAτ ,B)≥1−ε

1− λ`(OAτ ,B) ≤ o(|Aτ ||B|),

which further implies

N (OAτ ,B; [1− ε, 1]) ≤ |Aτ ||B|+ o(|Aτ ||B|).

Thus we obtain

lim
τ→∞

N (OAτ ,B; [1− ε, 1])

|Aτ |
= |B|.

E.3 Proof of Theorem 7.2

We first recall the eigendecompostion of OAτ ,B =
∑

`≥0 λ`u`u
∗
` , where λ` is short for

λ`(OAτ ,B). Utilizing the fact that u`, ` = 0, 1, . . . is a complete orthonormal basis for L2(Aτ ),

we rewrite the function in (7.19):

‖χξ(g)− PMnχξ(g)‖2
L2(Aτ ) =

∑
`

∣∣∣〈(I − PMn)χξ(g), u`(g)〉L2(Aτ )

∣∣∣2
=
∑
`

〈〈
(I − PMn)χξ(g)χ∗ξ(h), u∗`(h)

〉
L2(Aτ )

, u`(g)
〉
L2(Aτ )

=
∑
`

〈〈
(I − PMn)χξ(h

−1 ◦ g), u∗`(h)
〉
L2(Aτ )

, u`(g)
〉
L2(Aτ )

where the second equality utilized the fact that PMn is the orthogonal projector onto the

subspace Mn, and
∑

`

〈〈
(I − PMn)χξ(g)χ∗ξ(h), u∗`(h)

〉
L2(Aτ )

, u`(h)
〉
L2(Aτ )

is equivalent to the

trace of (I − PMn)χξ(g)χ∗ξ(h). Plugging this equation into (7.19) gives

233



∫
B
‖χξ(g)− PMnχξ(g)‖2

L2(Aτ ) d ξ

=

∫
B

∑
`

〈〈
(I − PMn)χξ(θ

−1 ◦ g), u∗`(h)
〉
L2(Aτ )

, u`(g)
〉
L2(Aτ )

d ξ

=
∑
`

∫
B

〈〈
(I − PMn)χξ(θ

−1 ◦ g), u∗`(h)
〉
L2(Aτ )

, u`(g)
〉
L2(Aτ )

d ξ

=
∑
`

〈(I − PMn)OAτ ,Bu`, u`〉L2(Aτ )

=
∑
`

λ` 〈(I − PMn)u`, u`〉L2(Aτ )

where the second line follows from monotone convergence theorem (since each term inside

the summation is nonnegative). Thus, we conclude that the optimal n-dimensional subspace

which minimizes the last term in the above equation is Un (which is spanned by the first n

eigenfunctions). With this choice of subspace, we have

∫
B
‖χξ(g)− PUnχξ(g)‖2

L2(Aτ ) d ξ =
∑
`≥n

λ`

= |Aτ ||B| −
n−1∑
`=0

λ`

since by (7.8) we have
∑

` λ` = |Aτ ||B|. The proof is completed by noting that ‖χξ(g)‖2
L2(Aτ ) =

|Aτ | for any ξ ∈ B.

E.4 Proof of Theorem 7.3

First let ν be a random variable with uniform distribution on [0, 2π). We define the

random vector

r(g) = r(g; ξ, ν) = χξ(g)ejν ,

where the term ejν acts as a phase randomizer and ensures that r is zero-mean:

E [r(g)] =
1

|B|2π

∫
B
χξ(g)ejν d ξ d ν =

1

|B|2π

∫
B
χξ(g) d ξ

∫ 2π

0

ejν d ν = 0
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for all g ∈ Aτ .

Now we compute the autocorrelation R of the random variable r as

R(g, h) = E [r(g)r∗(h)]

= E
[(
χξ(g)ejν

) (
χ∗ξ(h)e−jν

)]
= E

[
χξ(θ

−1 ◦ g)
]

=
1

|B|

∫
B
χξ(θ

−1 ◦ g) d ξ

=
1

|B|
KB(θ−1 ◦ g)

(E.7)

for all h, g ∈ Aτ . Here KB is defined in (7.5). Note that KB(θ−1 ◦ g) with h, g ∈ Aτ is

the kernel of the Toeplitz operator OAτ ,B. Now it follows from the Karhunen-Loève (KL)

transfrom [121] that

E
[
‖r − PUnr‖2

L2(Aτ )

]
=

1

|B|
∑
`≥n

λ`(OAτ ,B) = |B| −
n−1∑
`=0

λ`(OAτ ,B).

We then compute the expectation for the energy of r as

E
[
‖r‖2

L2(Aτ )

]
=

1

|B|
1

2π

∫
B
|χξ(g)ejν |2 d ξ d ν = |Aτ |.

The proof is completed by noting that E
[
‖r − PUnr‖2

L2(Aτ )

]
= E

[
‖x− PUnx‖2

L2(Aτ )

]
and

E
[
‖r‖2

L2(Aτ )

]
= E

[
‖x‖2

L2(Aτ )

]
.

E.5 Proof of Corollary 7.1

First, the inverse Fourier transform of the power spectrum Px(ξ) gives the autocorrelation

function for x(g):

ax(g) =

∫
ξ

1

|B|
χξ(g) d ξ =

1

|B|
KB(g).

It follows that the random vector x has mean zero and an autocorrelation function R given

by (E.7). Thus, x has exactly the same autocorrelation structure as the random function r

we considered in Appendix E.4. The proof is completed by computing

E
[
‖x‖2

L2(Aτ )

]
=

∫
Aτ

1

|B|
KB(e) d g = |Aτ |.
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