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We are in the Second Quantum Revolution

• First quantum revolution (first half 
of 20th): 
− discover of fundamental laws of 

microscopic realm

− formulation of quantum physics

• Second quantum revolution
− Technologies based on the 

manipulation of individual quantum 
systems

− Use properties such as superposition 
and entanglement

https://www.slideshare.net/BrunoFedrici/the-second-quantum-revolution-the-world-beyond-binary-0-and-1

• Q sensing
• Q communication
• Q simulation
• Q computing (quantum

supremacy/advantage,
exponential speedup)



https://www.xprize.org/prizes/qc-apps



What Makes Quantum Computing More Powerful?

• Pros: superposition gives the ability to perform computations over classical 
computers
− several qubits in superposition can crunch through a vast number of potential 

outcomes simultaneously

• Cons: measure the state of a quantum system is much harder

Image Credit: https://www.indiatechonline.com/viewimage.php?id=1839 https://www.youtube.com/watch?v=RCj_BJ6BddM
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https://www.indiatechonline.com/viewimage.php?id=1839


Learn quantum world using classical machines

• Why do we want to construct classical representations of quantum systems?
− Knowing what the physical system is

− Many quantum applications rely on hybrid classical-quantum algorithms (an interface
between the two)

• Exploit classical SPML for enhancing our ability to learn quantum world

https://scitechdaily.com/decoding-quantum-nonlocality-a-new-
criterion-for-quantum-networks/

quantum system classical representation

post-processing
(classical SPML)

characterize properties

• full description
• fidelity
• local

observables
• correlations
• Entanglement

witness/entropy
• Hamiltonia

≥ 100 qubits

reduce 
experimental

 resources

reduce 
computational

 resources

Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nature Physics 2020.



Caveat

• The rest of this talk is to describe the basic ideas of
quantum state learning or estimation to folks with
EECS background, but maybe don’t know quantum

• There will be ≈ 0 physical intuition provided in the
talk

• Instead, we will illustrate from mathematical
perspective (particularly, linear algebra + probability)



Quantum state learning/estimation

• Quantum state learning: how can we learn about quantum objects
− called learning in quantum and TCS, e.g., FOCS 2024 Workshop: Recent Advances in 

Quantum Learning

− called estimation or inverse problem in signal processing

• Set up an experiment that can produce copies of a quantum state 𝜌 at a
time

𝑡

• Sample complexity: how many copies of 𝜌 needed to learn about it?

…



• One does not simply sample from a quantum
state

• To interact with a quantum state, one must
specify a measurement {𝑨1, 𝑨2, … , 𝑨𝐾} such
that
− 𝑨𝐾 ≽ 0

− 𝑨1 + ⋯ + 𝑨𝐾 = 𝐈

− positive operator-valued measure (POVM)

Quantum measurement
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…

• Born’s rule: The outcome of measuring 𝝆 using this POVM is a random
one-hot vector; we observe 𝑨𝑘 with probability 𝑝𝑘 = trace 𝑨𝑘𝝆 .

• Additionally, measuring a state collapses the state

POVM

𝑨1

𝑨2

𝑨𝐾

𝝆

𝝆 ≽ 0, trace 𝝆 = 1

• An 𝑛-qudit quantum system is described by a density matrix 𝝆 ∈ ℂ𝑑𝑛×𝑑𝑛



• Often repeat this process many times on different copies of 𝝆

Quantum measurement
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…POVM

𝑨1
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𝑨𝐾

𝑄 times

…

Ƹ𝑝1

Ƹ𝑝2

Ƹ𝑝𝐾

…

ෝ𝒑

• Goal: learn the properties of the state 𝝆 from ෝ𝒑 𝔼[ Ƹ𝑝𝑘] = 𝑝𝑘 = trace 𝑨𝑘𝝆

frequency

𝝆

𝑨1
0
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…POVM

𝑨2

𝑨𝐾

𝝆
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Curse of dimensionality

• An 𝑛-qudit state 𝝆 lives in the space ℂ𝑑𝑛×𝑑𝑛
satisfies

𝝆 ≽ 0, trace 𝝆 = 1

0
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0

0
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…POVM

𝑨1

𝑨2

𝑨𝐾

𝝆

• The outcome of measuring 𝝆 using the
POVM is a random variable, i.e., we
observe 𝑨𝑘 with probability 𝑝𝑘 =
trace 𝑨𝑘𝝆 . So the entropy of the
outcome is at most log2(𝐾) 

• Thus, 𝑄 = poly(𝑑𝑛) sample complexity
is required for learning general state

Haah, J., Harrow, A., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE TIT, 2017.



Curse of dimensionality

• poly 𝑑𝑛 sample complexity is needed for learning a general quantum state

• But we may not care about learning anything about any quantum states

• Practical states have very low-
dimensional structures
− low-rank

− matrix product state

− neural quantum state

• Learning restricted properties
− fidelity

− correlations

− entanglement witness

− etc.



low-rank generalPEPOMPS/
MPO

NQS
(neural

quantum state)

QST

Curse of dimensionality
(poly(𝑑𝑛𝑟) storage,
measurements, computation)

poly(𝑛)

Fidelity

Correlation

Full state
characterization

Predict
certain
properties Entanglement 𝑂(# observables) by

classical shadow



Outline
• Statistical analysis: sampling complexity for

estimating structured states
− matrix product state/operator

• Algorithm design: projected classical shadow
for estimating structured states
− efficient algorithm with nearly optimal sampling

complexity



Matrix product state/operator

• A quantum state is a matrix product operator if its entries can be expressed as

＝

− # parameters: 𝑂(𝑛𝑑2𝑟2), 𝑟 is called the bond dimension, or MPO rank

− The manifold of all MPO𝑟  has dimension 𝑛 − 1 𝑑2𝑟2 + 2𝑑2𝑟 − 𝑛 − 1 𝑟2

− Known as tensor train decomposition if reshape the state as a tensor

− Many quantum systems with short-range interactions obey such structures

A. H. Werner et al., “Positive tensor network approach for simulating open quantum many-body systems,” PRL 2026.
Holtz, Rohwedder, Schneider. "On manifolds of tensors of fixed TT-rank." Numerische Mathematik 120.4 (2012): 701-731.

𝑛 factors, each with size 𝑟 × 𝑑 × 𝑑 ×
𝑟



Informationally complete POVMs

• A POVM is informationally complete (IC) if it
consists of 𝐾 ≥ 𝑑2𝑛 matrices and can form
𝑑2𝑛 linearly independent matrices by linear
combination.

• The induced linear mapping𝒜 is invertible

• With a good estimation of the probability
distribution ෝ𝒑, we get 𝝆 = 𝒜−1(ෝ𝒑)

• It could be hard to implement physically

• Often it is useful to study the sample
complexity

…POVM

𝑨1

𝑨2

𝑨𝐾

𝝆

𝑝1 = trace 𝑨1𝝆

𝑝2 = trace 𝑨2𝝆

𝑝𝐾 = trace 𝑨𝐾𝝆

ideal case: measure
the state ∞ times

𝒑 = 𝒜(𝝆)



Informationally complete POVMs

A finite set of normalized vectors 𝒘1, … , 𝒘𝐾 ∈ ℂ𝑑𝑛
is called a spherical

quantum 𝑡-design if

1

𝐾
෍

𝑘=1

𝐾

𝒘𝑘𝒘𝑘
H ⊗𝑠

= න 𝒘𝒘H ⊗𝑠
𝑑𝒘 , ∀𝑠 ≤ 𝑡, 

where the integral is taken with respect to the Haar measure on the complex
unit sphere.

• The induced 𝑡-design POVM {𝑨𝑘 = 𝒘𝑘𝒘𝑘
H} is IC and satisfies

||𝒜(𝝆)||2
2 ≈

||𝝆||𝐹
2 + trace 𝝆

2

𝐾
for any Hermitian matrices 𝝆.



Sample complexity with IC POVMs

Theorem (informal) Suppose {𝑨𝑘} forms a 𝑡-design POVM (𝑡 ≥ 3). For an MPO
state 𝝆⋆ in MPO𝑟, we measure the state 𝑄 times using the POVM. Then any
global solution of the constrained least-squares estimator

ෝ𝝆 = argmin
𝝆: MPO𝑟

||𝒜(𝝆) − ෝ𝒑||2
2

satisfies
||ෝ𝝆 − 𝝆⋆||𝐹 ≤ 𝜖

with high probability as long as

𝑄 ≳
𝑛𝑑2𝑟2 log factors

𝜖2

• It matches the DOF in MPOs and is nearly optimal (if ignore the log factors).

• This supports the use of low-𝑄 measurement schemes.



Haar random projective measurements

• Moving toward more practical measurements, consider a randomly
generated Haar-distributed unitary matrix 𝑼 = 𝒖1 ⋯ 𝒖𝑑𝑛 . With this, we
can form projective measurement with POVM

𝑨1 = 𝒖1𝒖1
H, 𝑨2 = 𝒖2𝒖2

H, … , 𝑨𝑑𝑛 = 𝒖𝑑𝑛𝒖𝑑𝑛
H

ran
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…

𝝆

• The probability of observing 𝑘-th outcome is
𝑝𝑘 = trace 𝑨𝑘𝝆 = 𝒖𝑘

H𝝆𝒖𝑘 = 𝒆𝑘
T 𝑼H𝝆𝑼 𝒆𝑘

• Apply a random unitary matrix 𝑼 to rotate the
the state and then perform a computational-
basis measurement with {𝒆𝑘}
− A universal quantum computer can approximately 

generate such random unitary to any given 
precision, though the complexity varies



Haar random projective measurements

• Moving toward more practical measurements, consider a randomly
generated Haar-distributed unitary matrix 𝑼 = 𝒖1 ⋯ 𝒖𝑑𝑛 . With this, we
can form projective measurement with POVM

𝑨1 = 𝒖1𝒖1
H, 𝑨2 = 𝒖2𝒖2

H, … , 𝑨𝑑𝑛 = 𝒖𝑑𝑛𝒖𝑑𝑛
H

• This POVM is not IC. So in general, multiple such POVMs are needed.

Theorem (informal) Aggregating measurements from 𝑀 such unitary bases,
then with

𝑀 ≳ 𝑂(𝑛𝑑2𝑟2log 𝑛)

the linear map𝒜 satisfies one-side RIP ||𝒜(𝝆)||2
2 ≳

𝑀

𝑑𝑛 for all MPO𝑟.

• Ensure distinct measurements (𝒜(𝝆1) ≠ 𝒜(𝝆2)) as long as 𝝆1 ≠ 𝝆2



Sample complexity with Haar random measurements

Theorem (informal) Aggregating measurements from 𝑀 such Haar-distributed
rank-one POVMs, with 𝑄 state copies per POVM, any global solution of the
constrained least-squares estimator

ෝ𝝆 = argmin
𝝆: MPO𝑟

||𝒜(𝝆) − ෝ𝒑||2
2

satisfies
||ෝ𝝆 − 𝝆⋆||𝐹 ≤ 𝜖

with high probability as long as

𝑄𝑀 ≳
𝑛3𝑑2𝑟2 log factors

𝜖2
.

• 𝑛3 could be further improved.

• This supports the use of low-𝑄𝑀 measurement schemes.



Nonconvex Algorithms

• The constrained least-squares estimator involves a nonconvex opt problem
ෝ𝝆 = argmin

𝝆: MPO𝑟

||𝒜(𝝆) − ෝ𝒑||2
2

• Projected gradient descent or iterative hard thresholding
− no tractable algorithm for exact projection, only quasi-optimal approximation

− we provide convergence guarantee with additional conditions for IC-PVOM

• Factorization approach: optimize over the factors 𝑿1, … , 𝑿𝑛
min

𝑿1,…,𝑿𝑛

||𝒜([𝑿1, … , 𝑿𝑛]) − ෝ𝒑||2
2

− transfer the nonconvex set to nonconvex optimization over the factors

− reduced memory

− we establish local linear convergence for Gaussian measurement ensembles𝒜

Z. Qin, C. Jameson, A. Goldar, M. Wakin, Z. Gong, Z. Zhu, ‘‘Sample-Optimal Quantum State Tomography for Structured Quantum States in One Dimension," 2024.
Z. Qin, M. B. Wakin, and Z. Zhu, ‘‘Guaranteed Nonconvex Factorization Approach for Tensor Train Recovery," JMLR 2025.



Experiments

• Pure state MPS; 𝑀 = 1; iterative hard thresholding

• Error increases with 𝑟, decreases with 𝑄, increases only polynomially with 𝑛

𝑄
𝑄

𝑄

𝑄

𝑄
𝑄



Outline
• Statistical analysis: sampling complexity for

estimating structured states
− matrix product state/operator

• Algorithm design: projected classical shadow
for estimating structured states
− efficient algorithm with nearly optimal sampling

complexity



Classical shadow

Repeat the following single-shot measurement 𝑀 times [HKP’20]:

• Generate a random unitary matrix 𝑼𝒊 to rotate the quantum system

• Measure the system in the computational basis once to get ෝ𝒑𝑖 ∈ 0,1 𝑛

• Store the “classical shadow”: 𝝆𝑖 = 𝑑𝑛 + 1 𝑼𝒊ෝ𝒑𝑖 𝑼𝒊ෝ𝒑𝑖
H − 𝐈𝑑𝑛
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𝝆
𝑼𝟏

𝝆𝟏 𝑼𝟐

𝝆𝟐

𝑼𝟑

𝝆𝟑

one column of 𝑼𝒊

0
0
1
0
⋮
0
0

Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nature Physics 2020.



Classical shadow

Repeat the following single-shot measurement 𝑀 times:

• Generate a random unitary matrix 𝑼𝒊 to rotate the quantum system

• Measure the system in the computational basis once to get ෝ𝒑𝑖 ∈ 0,1 𝑛

• Store the “classical shadow”: 𝝆𝑖 = 𝑑𝑛 + 1 𝑼𝒊ෝ𝒑𝑖 𝑼𝒊ෝ𝒑𝑖
H − 𝐈𝑑𝑛

𝑼𝟏

𝝆𝟏 𝑼𝟐

𝝆𝟐

𝑼𝟑

𝝆𝟑

one column of 𝑼𝒊

0
0
1
0
⋮
0
0

− 𝝆𝑖 is not a physical state as it has eigenvalues
𝜎1 = 𝑑𝑛 , 𝜎2 = ⋯ = 𝜎𝑑𝑛 = −1

− full state, regardless of the ground-truth state 𝝆

− it is random in 𝑼𝒊 and ෝ𝒑𝑖|𝑼𝒊

− it is an unbiased estimator of 𝝆
𝔼𝑼𝒊,ෝ𝒑𝑖

𝝆𝑖 = 𝝆



Classical shadow for regularizing LS

• Consider a least-squares estimator 
ෝ𝝆LS = argmin

𝝆′∈ℂ𝑑𝑛×𝑑𝑛
||ෝ𝒑  − 𝒜 𝝆′ ||2

− without constraints, leads to a simple 
closed-form solution

ෝ𝝆LS  = (𝒜∗𝒜)+(𝒜∗ ෝ𝒑 )
    

       

− (⋅)+ is the pseudo-inverse 

− biases to zero when 𝑀 ≪ 𝑑𝑛

• By CLT,
1

𝑀
𝒜∗𝒜 → 𝔼

1

𝑀
𝒜∗𝒜

𝝆 ∈ ℂ𝑑𝑛×𝑑𝑛

𝒜1
ෝ𝒑1 ∈ ℝ𝑑𝑛

POVMs

𝒜2
ෝ𝒑2 ∈ ℝ𝑑𝑛

𝒜𝑀
ෝ𝒑𝑀 ∈ ℝ𝑑𝑛

…

𝒜 ෝ𝒑 ∈ ℝ𝑀𝑑𝑛

quantum channel ℳ

ෝ𝝆CS =
1

𝑀
෍

𝑖

ℳ−1(𝑼𝒊ෝ𝒑𝑖 𝑼𝒊ෝ𝒑𝑖
H)

classical shadow 𝝆𝑖

=
1

𝑀
෍

𝑖

1

𝑄
𝒜∗𝒜

+

(𝑼𝒊ෝ𝒑𝑖) 𝑼𝒊ෝ𝒑𝑖
H



Shadows all the way down

Recall:𝒜 𝝆 = 𝒜1 𝝆 ⋯ 𝒜𝑀 𝝆 𝑇

Pseudoinverse
Regularization

parameter
Fictitious 
quantum 
channel



Classical shadow vs RLS

• RLS and CS trade off bias and variance differently

• Use them to estimate properties of the state 𝝆
− e.g., estimate the linear observable 𝜆 = trace 𝚲𝝆 by

መ𝜆 = trace 𝚲ෝ𝝆CS =
1

𝑀
෍

𝑖

trace 𝚲𝝆𝒊

− media of mean can reduce the variance
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Bias Variance Distribution
dependent?

LS high high N

CS low (zero) high Y

RLS high low N

Low variance, 
high bias

High variance, 
low bias

መ𝜆 = trace(𝚲ෝ𝝆)

Z. Zhu, J. Lukens, B. Kirby, ‘‘On the connection between least squares, regularization, and classical shadows," Quantum, 2024

Instability in 
interpolating regime 

(𝑴 ≈ 𝒅𝟐𝒏)



Classical shadow for tomograph?

• Can we use classical shadow for full
characterization?

𝔼 ||ෝ𝝆CS − 𝝆⋆||𝐹
2 ≈

𝑑2𝑛

𝑀
• Still needs 𝑑2𝑛 sample complexity to get

a stable recovery of the full state

• Projected classical shadow (PCS) to
incorporate prior information about the
state structure into CS

ෝ𝝆PCS = 𝒫𝕏 ෝ𝝆CS = argmin
𝝆′∈𝕏

||𝝆′ − ෝ𝝆CS||𝐹
2



Projected classical shadow

• Covering number 𝑁(𝕏) captures how “big” the space

• log 𝑁(𝕏) often captures the degrees of freedom, so PCS
achieves nearly optimal sample complexity

Theorem (PCS; informal) For a given state 𝝆⋆ ∈ 𝕏, ෝ𝝆PCS satisfies
||𝝆⋆ − ෝ𝝆PCS||𝐹 ≤ 𝜖

with high probability as long as

𝑀 ≳
log 𝑁(𝕏)

𝜖2

Z. Qin, J. Lukens, B. Kirby, Z. Zhu, Enhancing Quantum State Reconstruction with Structured Classical Shadows, npj Quantum Information, 2025.



Projected classical shadow

• Enable the use of efficient methods for approximate
projection computation

• Sample complexity grows only proportionally

Theorem (Approximate PCS; informal) ෥𝝆PCS = ෨𝒫𝕏 ෝ𝝆CS  satisfies
||𝝆⋆ − ෥𝝆PCS||𝐹 ≤ 𝜖

with high probability as long as

𝑀 ≳
𝛼log 𝑁(𝕏)

𝜖2

• Approximate projection ෨𝒫𝕏 satisfies || ෨𝒫𝕏 𝝆 − 𝝆||𝑭 ≤ 𝛼||𝒫𝕏 𝝆 − 𝝆||𝑭



Projected classical shadow for low-rank states

• Projection can be computed by eigen-decomposition

• Ω(𝑑𝑛𝛾2/𝜖2) sample complexity for ||𝝆⋆ − ෝ𝝆PCS||1 ≤ 𝜖

• Match the optimal guarantee (up to log terms) for
independent measurements

Theorem (informal) For low (matrix) rank states 𝕏 with rank 𝛾, ෝ𝝆PCS satisfies
||𝝆⋆ − ෝ𝝆PCS||𝐹 ≤ 𝜖

with high probability as long as

𝑀 ≳
𝑑𝑛𝛾

𝜖2

{𝝆: 𝝆 ∈ ℂ𝑑𝑛×𝑑𝑛

rank 𝝆 ≤ 𝛾}

log 𝑁 𝕏 ≲ 𝑑𝑛𝛾 

Haah, J., Harrow, A., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inf. Theory 2017.



Projected classical shadow for MPOs

• However, no known algorithm to compute the exact
projection. TT-SVD is a sequential SVD-based algorithm
with quasi-optimal guarantee

||SVDTT 𝝆 − 𝝆||𝐹
2 ≤ (𝑛 − 1) min

𝝆′: MPO𝑟

||𝝆′ − 𝝆||2
2

• PCS with TT-SVD is quasi-optimal for MPOs (𝑂(𝑛) larger
than the DOF)

Theorem (informal) For a given MPO 𝝆⋆ ∈ 𝕏, ෝ𝝆PCS satisfies
||𝝆⋆ − ෝ𝝆PCS||𝐹 ≤ 𝜖

with high probability as long as 𝑀 ≳
𝑛𝑑2𝑟2

𝜖2 (matches the DOF).

The approximate ෥𝝆PCS with ෨𝒫𝕏 given by TT-SVD satisfies the same guarantee

with 𝑀 ≳
𝑛2𝑑2𝑟2

𝜖2 .

{𝝆: 𝝆 ∈ ℂ𝑑𝑛×𝑑𝑛

MPO𝑟}

log 𝑁 𝕏 ≲ 𝑛𝑑2𝑟2 IV Oseledets, “Tensor-Train Decomposition”, SIAM Journal on Scientific Computing, 2021.



Experiments on low-rank state

• PCS outperforms CS, particularly when the rank is low

• Estimating 𝑛 = 4 qubit low (matrix) rank states

Type 
equation 
here.

𝛾 = 1

Type 
equation 
here.

𝛾 = 4

Type 
equation 
here.

𝛾 = 14



Experiments on MPOs

• PCS significantly outperforms CS

• Estimating 𝑛 = 7 qubit MPOs

Type 
equation 
here.

𝑟 = 1

Type 
equation 
here.

𝑟 = 4



Experiments on practical states

• Both LR-PCS and MPO-PCS outperform original CS

• PCS matches the performances of maximum likelihood estimation (MLE)

• Estimating 𝑛 = 7 qubit thermal and GHZ states

GHZ statethermal state (𝑇 =
2)

thermal state (𝑇 =
0.2)



One more thing: experimental cost for POVMs

• We shift from IC-POVM to Haar random projective measurement because
the former is challenging to implement. But Haar-random unitaries
− are uniformly distributed over U(𝑑𝑛), require exp(𝑛) time to generate

• Pseudorandom unitaries

• Local measurements
− Extreme case: randomly rotate each qudit separately

𝑼 = 𝑼1 ⊗ 𝑼2 ⊗ ⋯ ⊗ 𝑼𝑛

𝑑𝑛

× 𝑑𝑛
𝑑 × 𝑑 𝑑 × 𝑑 𝑑 × 𝑑

− Statistical analysis will be more challenging

T Schuster, J Haferkamp, HY Huang, Random unitaries in extremely low depth, Science 2025.



Conclusion

• We are in the noisy intermediate scale quantum (NISQ) ear. We don’t have
general, large scale, fault-tolerant quantum computation yet.
− extend the analysis to local measurements

− deal with State Preparation and Measurement (SPAM) errors

Quantum states have very low-dim structures. We can
exploit them for efficient quantum state learning
• reduce sampling complexity
• design efficient post-processing algorithm

Z. Qin, J. Lukens, B. Kirby, Z. Zhu, Enhancing Quantum State Reconstruction with Structured Classical Shadows, npj Quantum Information, 2025.
Z. Qin, C. Jameson, Z. Gong, M. B. Wakin, Z. Zhu, Quantum State Tomography for Matrix Product Density Operators, IEEE TIT 2024.
Z. Qin, et al., Z. Zhu, Sample-Efficient Quantum State Tomography for Structured Quantum States in One Dimension, 2024.
Z. Zhu, J. Lukens, B. Kirby, ‘‘On the connection between least squares, regularization, and classical shadows," Quantum, 2024
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