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We are in the Second Quantum Revolution

* First quantum revolution (first half ¢ Second quantum revolution
of 20th): — Technologies based on the

— discover of fundamental laws of manipulation of individual quantum
microscopic realm systems
~ formulation of quantum physics - Use properties such as superposition

and entanglement
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What Makes Quantum Computing More Powerful?

Bit Qubit

(quantum computing)

g

(classical computing)

y )\ superposition
Bl1)
e
1
1)
* Pros: superposition gives the ability to perform computations over classical

computers
— several qubits in superposition can crunch through a vast number of potential

outcomes simultaneously
 Cons: measure the state of a quantum system is much harder

Image Credit: https://www.indiatechonline.com/viewimage.php?id=1839  https://www.youtube.com/watch?v=RCj_BJ6BddM
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Learn quantum world using classical machines

reduce
experimental
resources

reduce
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https://scitechdaily.com/decoding-quantum-nonlocality-a-new- 3 == K Hamiltonia /
criterion-for-quantum-networks/ . . - .
gquantum system classical representation characterize properties

* Why do we want to construct classical representations of quantum systems?
- Knowing what the physical system is

- Many quantum applications rely on hybrid classical-quantum algorithms (an interface
between the two)

* Exploit classical SPML for enhancing our ability to learn quantum world

Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from verv few measurements. Nature Physics 2020.



Caveat

The rest of this talk is to describe the basic ideas of
guantum state learning or estimation to folks with
EECS background, but maybe don’t know quantum

There will be = 0 physical intuition provided in the
talk

Instead, we will illustrate from mathematical
perspective (particularly, linear algebra + probability)

Quantum
Computation
and Quantum

| Information }‘
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Quantum state learning/estimation

* Quantum state learning: how can we learn about quantum objects

— called learning in quantum and TCS, e.g., FOCS 2024 Workshop: Recent Advances in
Quantum Learning

— called estimation or inverse problem in signal processing

* Set up an experiment that can produce copies of a quantum state p at a
time
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* Sample complexity: how many copies of p needed to learn about it?



Quantum measurement

* Ann-qudit quantum system is described by a density matrix p € ca"xd”
p =0, trace(p) =1 A,
* One does not simply sample from a quantum =
POVM

state
* To interact with a quantum state, one must M«_ — /7§ =)

specify a measurement {44, 4,, ..., Ag} such P |

that

- Ag =0 Ay

A+t A =1

— positive operator-valued measure (POVM)

* Born’srule: The outcome of measuring p using this POVM is a random
one-hot vector; we observe A, with probability p,, = trace(4,.p).

 Additionally, measuring a state collapses the state
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Quantum measurement

* Often repeat this process many times on different copies of p

Al 0 Al 1 p\l
A, (1) A, 8 P2
POVM POVM

frequency

=

o
o

0 0
Ay 0) Ay 0) i
L
Q times D

* Goal: learn the properties of the state p from p E[p] = pr = trace(A4,p)



Curse of dimensionality

* Ann-qudit state p lives in the space C¢ %" satisfies
p =0, trace(p) =1

* The outcome of measuring p using the

POVM is a random variable, i.e., we A 1 —
observe A, with probability p, = A4, 1 )—
trace(A;p). So the entropy of the — POVM 1
outcome is at most log, (K) =4 ) X |
* Thus, Q = poly(d™) sample complexity — )—
: : : p
is required for learning general state I )—
Ag 1 —

Haah, J., Harrow, A,, Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE TIT, 2017.
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Curse of dimensionality

poly(d™) sample complexity is needed for learning a general quantum state
But we may not care about learning anything about any quantum states

have very low- * Learning restricted properties
dimensional structures - fidelity
— low-rank - correlations
— matrix product state - entanglement witness
- neural quantum state - etc.

z € {0,1}"

p:p =0 trace(p) =1

¥(z)

(¢) Neural Quantum State

(a) MPS/MPO



Full state

QST

characterization

Predict
certain
properties

Correlation

Curse of dimensionality
poly(n) 7 (poly(d™r) storage,
o measurements, computation)

Entanglement o O (# observables) by
Fidelity classical shadow
| | | ~_ —1 .
MPS/ pepo  NQS low-rank  general
(neural
-0 quantum state)
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Outline

* Statistical analysis: sampling complexity for - ~ W FE o
estimating structured states
— matrix product state/operator

{p:p = 0,trace(p) = 1}

 Algorithm design: projected classical shadow
for estimating structured states

- efficient algorithm with nearly optimal sampling
complexity

Structured state




Matrix product state/operator

A guantum state is a matrix product operator if its entries can be expressed as

(peC" ")
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— # parameters: 0(nd?r?), r is called the bond dimension, or MPO rank

— The manifold of all MPO,. has dimension (n — 1)d*r? + 2d*r — (n — 1)r*
- Known as tensor train decomposition if reshape the state as a tensor

- Many quantum systems with short-range interactions obey such structures

A. H. Werner et al., “Positive tensor network approach for simulating open quantum many-body systems,” PRL 2026.
Holtz, Rohwedder, Schneider. "On manifolds of tensors of fixed TT-rank." Numerische Mathematik 120.4 (2012): 701-731.



Informationally complete POVMs

ideal case: measure
the state co times

A POVM is informationally complete (IC) if it
consists of K > d?™ matrices and can form

d*™ linearly independent matrices by linear A, p, = trace(4,p)
combination. A, p, = trace(A4,p)

POVM

The induced linear mapping A is invertible
With a good estimation of the probability + =7 | =
distribution P, we get p = A~ 1(P) ‘

It could be hard to implement physically
Ak pyg = trace(Agp
\ J
|

p = A(p)

Often it is useful to study the sample
complexity




Informationally complete POVMs

A finite set of normalized vectors wl, . WK € C%" is called 2 spher|cal
“quantum t-design |f

KZ:(WRWE)@)S f(wwH)@)S dw,Vs < t,

‘where the integral is taken with respect to the Haar measure on the complex
_unit sphere..

Ss====="

* The mduced t- de5|gn POVM {Ak = wkwk} is IC and satlsfles
1pl1% + (trace(p))’
A5 =

K
for any Hermitian matrices p.




Sample complexity with |IC POVMs
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Theorem (mformal) Suppose {Ak} forms a t de5|gn POVI\/I (t > 3) For an IVIPO
state p* in MPO,., we measure the state () times using the POVM. Then any “
‘global solution of the constrained least-squares estimator

p = argmin||A(p) — P||5
p: MPO,

satisfies

1p—pllr <e
. with high probability as long as
”’7 nd?r?(log factors)

* |t matches the DOF in MPOs and is nearly optimal (if ignore the log factors).
* This supports the use of low-Q measurement schemes.



Haar random projective measurements

Moving toward more practical measurements, consider a randomly
generated Haar-distributed unitary matrix U = [u, -+ uygn]. With this, we

can form projective measurement with POVM
H

A = wuy, A,=uyuy, ..., Agn= U nln

The probability of observing k-th outcome is
pi = trace(Axp) = wy puy = e, (U pU)e,

Apply a random unitary matrix U to rotate the

the state and then perform a computational- (&

H

______

basis measurement with {e;}

— A universal quantum computer can approximately
generate such random unitary to any given
precision, though the complexity varies

LA A
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Haar random projective measurements

* Moving toward more practical measurements, consider a randomly
generated Haar-distributed unitary matrix U = [u; - ugn]. With this, we

can form projective measurement with POVM

A =wull, A, =uwull, .., Agn=ugnun

 This POVM is not IC. So in general, multiple such POVMs are needed.

= — . — e e e == = = = == = e _ =T s = — == = — === === == == s === = == = =

TTheorem (informal) Aggregating measurements from M such unitary bases,
‘then with
| M = 0(nd?r?logn)

— for aII MPO

the Ilnear map cfl SatISerS one- 5|de RIP ||cfl(p)| |2

. Ensure distinct measurements (c/l(pl) * c/l(pz)) as Iong as p1 P,

e ————__



Sample complexity with Haar random measurements

—===== e -
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rTheorem (mformal) Aggregatmg measurements from M such Haar dlstrlbuted
‘rank-one POVMs, with () state copies per POVM, any global solution of the
‘constrained least-squares estimator

p = argmin||A(p) — P||5
p: MPO,

‘satisfies
7 b =p7llr <€
- with high probability as long as

OM =

n3d*r?(log factors)

« 13 could be further improved.

* This supports the use of low-QM measurement schemes.



Nonconvex Algorithms

* The constrained least-squares estimator involves a nonconvex opt problem

p = argmin||A(p) — P||5
p: MPO,

* Projected gradient descent or iterative hard thresholding

- no tractable algorithm for exact projection, only quasi-optimal approximation
— we provide convergence guarantee with additional conditions for IC-PVOM

* Factorization approach: optimize over the factors X, ..., X,

. =112
XT}%”HA([Xl,...,an) P2

— transfer the nonconvex set to nonconvex optimization over the factors

- reduced memory
— we establish local linear convergence for Gaussian measurement ensembles A

Z.Qin, C. Jameson, A. Goldar, M. Wakin, Z. Gong, Z. Zhu, “‘Sample-Optimal Quantum State Tomography for Structured Quantum States in One Dimension," 2024.
Z. Qin, M. B. Wakin, and Z. Zhu, “Guaranteed Nonconvex Factorization Approach for Tensor Train Recovery," JMLR 2025.



Experiments

 Purestate MPS; M = 1; iterative hard thresholding

0.035

. —— A
-t Q = 1000,r =1

0.03 [ & Q=1000,r =2
= Q =2000,r=1
0.025|..5.. Q = 2000,r =2

e _ _ &
S |+ =3000,7 =1, .
.:-.?. D.DE "*" Q — Eﬂﬂﬂhr — 2 ‘.,r"“'
= -
= 0.015
0.01
0.005
b 8 10 12
T

* Errorincreases with r, decreases with @, increases only polynomially with n



Outline

{p:p = 0,trace(p) = 1}

 Algorithm design: projected classical shadow
for estimating structured states

- efficient algorithm with nearly optimal sampling
complexity

Structured state



Classical shadow

Repeat the following single-shot measurement M times [HkP'20]:

* Generate a random unitary matrix U; to rotate the quantum system

* Measure the system in the computational basis once to get p; € {0,1}"
* Store the “classical shadow”: p; = (d™ + DU;D;(U;P;)" — Iyn

o

one column of U;

o

o

o O

LA A

Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nature Physics 2020.

=N=




Classical shadow

Repeat the following single-shot measurement M times:
* Generate a random unitary matrix U; to rotate the quantum system
* Measure the system in the computational basis once to get p; € {0,1}"
* Store the “classical shadow”: p; = (d"™ + D U;p;(U;p;)" — I4n
one column of U;

- P; is not a physical state as it has eigenvalues
o =d% 0, = =0y =—1
— full state, regardless of the ground-truth state p
—itis random in U; and p;|U;
— it is an unbiased estimator of p
Ey,p,lpi]l = p

=N=




Classical shadow for regularizing LS POVMs

 Consider a least-squares estimator
PLs = argmin |[p — A (p")]|*

Ay
precd™xdm SOl m i
A, =P, ER

- without constraints, leads to a simple
closed-form solution

Prs = (A" A)" (A" (P))

MZ( ) (Ulpl)(Ulpl)H A, ‘ﬁM (S Rdn

- ()T is the pseudo-inverse \ ' S
A k= RMa"

— biases to zero when M «< d"

. 1 g 1 g . 1 L
By CLT, ;A Ak [qu “’q] )  pPcs = MZM LU;p; (U™
\ J 7 \ y J
quantum channel M classical shadow p;




Shadows all the way down

Operator Shadow
POVMs Transpose Calculation
— — Shadow

A | — 51— ([ 4]

~
S—

S| —» P Mean
) _H’Qlﬁ A
. —>

—
Ao [| = Do —|| AL || = I[S(:
P> : 2 : :
. . . . / Estimator
G}‘Oifgd AJ\J _>f)ﬂ,f_> _> _>£)AI
ru — ==

Empirical
Frequencies

Shadows

Classical Shadows

Least Squares Regularized Least Squares S() _ M‘l(-)
5() = (FAA) O [80) = GrATA+uD) ™ () where
7 7 M() = E [ ATA0)
Pseudoinverse Regularization \ Fictitious
parameter quantum

Recall:A(p) = [AL(p) -+ Ap(p)]T channel



CI aSSi Ca I S h a d OW VS R LS inte::itlglziirlli;yrier;ime -/1 - trace(Aﬁ)

(M ~ d*")

Variance Distribution
dependent?
1 =] ? 10! 107 10
CS low (zero) high Y | M

RLS high low N

 RLS and CS trade off bias and variance differently

* Use them to estimate properties of the state p
- e.g., estimate the linear observable A = trace(Ap) by

. 1
A =trace(Apcg) = Mz trace(Ap;) |

| __ 5
— media of mean can reduce the variance —

RLS

high bias

Z. Zhu, J. Lukens, B. Kirby, “On the connection between least squares, regularization, and classical shadows," Quantum, 2024 M



Classical shadow for tomograph?

e (Can we use classical shadow for full
characterization?

Physleal states
{p:p =0, trace(p) =1}

E[||pcs — p*|I15] = —
[1Pcs — p*|17] o

e Still needs d?™ sample complexity to get
a stable recovery of the full state

* Projected classical shadow (PCS) to
incorporate prior information about the
state structure into CS

Prcs = Px(Pcs) = argmin||p’ — Pesl |7
preX




Projected classical shadow

)} [lp™ — PrcsllF < €
with high probability as long as

W=
N

("

* Covering number N (X) captures how “big” the space

* log N(X) often captures the degrees of freedom, so PCS
achieves nearly optimal sample complexity

Z. Qin, J. Lukens, B. Kirby, Z. Zhu, Enhancing Quantum State Reconstruction with Structured Classical Shadows, npj Quantum Information, 2025.



Projected classical shadow

 Approximate projection Py satisfies ||Px(p) — pllr < a||?x(p) — p||F

====== B T — \zt‘:::, == == — e e e L =TT S === === = == _ _ _ _ _ _ _

' Theorem (Approximate PCS; informal) p Prpcs = PX(pCS) satisfies
| |p™ — PrcsllF < €

with high probability as long as

 Enable the use of efficient methods for approximate
projection computation Structured state
 Sample complexity grows only proportionally




Projected classical shadow for low-rank states

Theorem (mformal) For low (matrlx) rank states X with rank y, ppCS satisfies
‘ 1™ — PrcsllF < €

‘with high probability as long as

* Projection can be computed by eigen-decomposition

« Q(d™y?/e?) sample complexity for ||p* — Ppcs|l1 < €

 Match the optimal guarantee (up to log terms) for
independent measurements

@d"xd"

{p:p €
rank(p) <y}

logN(X) < d™y
Haah, J., Harrow, A, Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inf. Theory 2017.



Projected classical shadow for MPOs

‘Theorem ( (informal) For a given MPO p ex, ppCS satisfies
| lp™ — PrcsllF < €

dZ 2
(matches the DOF).

with high probability as longas M =

' The approximate Ppcg With Py given by TT-SVD satisfies the same guarantee
\\ ledz'l"z

. However no known algorlthm to compute the exact
projection. TT-SVD is a sequential SVD-based algorithm
with quasi-optimal guarantee

ISVD™"(p) ~ pllf < (n~1) min_ |Ip’ = plI3

* PCS with TT-SVD is quasi-optimal for MPOs (O (n) larger
than the DOF)

IV Oseledets, “Tensor-Train Decomposition”, SIAM Journal on Scientific Computing, 2021. ]og N(X) < ndzrz




Experiments on low-rank state

Estimating n = 4 qubit low (matrix) rank states

:' L 107!
102 y=4 -. 107
y=1
i | 1073 | ! 107
1000 3000 5000 7000 a000 1000 3000 5000 7000 000
AM M

PCS outperforms CS, particularly when the rank is low

—CS

Y =14 —LR-PCS

1000 3000 5000 7000 9000



Experiments on MPOs

* Estimating n = 7 qubit MPOs

=he cs N o
. ? 0 — . ? ,10[} —MPO-PCS

\ r = 4

Cr=1

| 10_2 1 1

102 ' 250 500 1000 1500 2000
250 500 1000 1500 2000 Y
M

* PCS significantly outperforms CS



Experiments on practical states

 Estimating n = 7 qubit thermal and GHZ states

—4-LR-PCS -4-LR-PCS

-=-CS —eT
) —#LR-MLE —#LR-MLE
102 —e-MPO-PCS 102 | 10?] —e-MPO-PCS
- MPO-MLE . " MPO-MLE
R e oN— . R
T 10° 4 = ol —— - — + = o
10 -5 v = 5 =) 1077 |
4 -~ [LR-PCS
- LR-MLE
- MPO-PCS

102 | _ ! ; ; 102 [|+-MPO-MLE| | | | 102}
1000 3000 53{1% 7000 9000 11000 1000 3000 5000 7000 9000 11000 Ronn 3{1'(:-0 5(:@0{} 7000 QD-DD 11000
M M M
thermal state (T = thermal state (T = GHZ state

0.2) 2)
 Both LR-PCS and MPO-PCS outperform original CS
 PCS matches the performances of maximum likelihood estimation (MLE)



One more thing: experimental cost for POVMs

 We shift from IC-POVM to Haar random projective measurement because
the former is challenging to implement. But Haar-random unitaries

— are uniformly distributed over U(d™), require exp(n) time to generate

2z Unitary k-design:
any k-query experiments
X Pseudorandom unitaries:

any efficient experiments

e Pseudorandom unitaries

?
) = Doche

Exponential depth Extremely low depth

* Local measurements

- Extreme case: randomly rotate each qudit separately Haar-random unitary  random quantum circuit
U= .00, -®U,
d™ dxd dxd dXxd
X d™

— Statistical analysis will be more challenging

T Schuster, J Haferkamp, HY Huang, Random unitaries in extremely low depth, Science 2025.



Conclusion

1)

{p: p =0, trace(p) =

Quantum states have very low-dim structures. We ¢ can
;‘ epr0|t them for efficient quantum state learning
‘» reduce sampling complexity
. de5|gn eff|C|ent post processmg algorlthm

Structured state

 We are in the noisy intermediate scale quantum (NISQ) ear. We don’t have
general, large scale, fault-tolerant quantum computation yet.
— extend the analysis to local measurements
— deal with State Preparation and Measurement (SPAM) errors

Z. Qin, J. Lukens, B. Kirby, Z. Zhu, Enhancing Quantum State Reconstruction with Structured Classical Shadows, npj Quantum Information, 2025.
Z.Qin, C. Jameson, Z. Gong, M. B. Wakin, Z. Zhu, Quantum State Tomography for Matrix Product Density Operators, IEEE TIT 2024.

Z.Qin, et al., Z. Zhu, Sample-Efficient Quantum State Tomography for Structured Quantum States in One Dimension, 2024.

Z. Zhu, J. Lukens, B. Kirby, “On the connection between least squares, regularization, and classical shadows," Quantum, 2024
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